## Determinant Theory

- Unique Solution of $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$
- College Algebra Definition of Determinant
- Diagram for Sarrus' $3 \times 3$ Rule
- Transpose Rule
- How to Compute the Value of any Determinant
- Four Rules to Compute any Determinant
- Special Determinant Rules
- Cofactor Expansion
- Adjugate Formula for the Inverse
- Determinant Product Theorem


## Unique Solution of a $2 \times 2$ System

The $2 \times 2$ system

$$
\begin{align*}
& a x+b y=e  \tag{1}\\
& c x+d y=f
\end{align*}
$$

has a unique solution provided $\boldsymbol{\Delta}=\boldsymbol{a} \boldsymbol{d}-\boldsymbol{b} \boldsymbol{c}$ is nonzero, in which case the solution is given by

$$
\begin{equation*}
x=\frac{d e-b f}{a d-b c}, \quad y=\frac{a f-c e}{a d-b c} \tag{2}
\end{equation*}
$$

This result is called Cramer's Rule for $2 \times 2$ systems, learned in college algebra.

## Determinants of Order 2

College algebra introduces matrix notation and determinant notation:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$



Figure 1. Sarrus' $\mathbf{2} \times \mathbf{2}$ rule. A diagram for $|A|=\mathbf{a d}-\mathrm{bc}$.
The boldface product ad is the product of the main diagonal entries and the other product $\boldsymbol{b} \boldsymbol{c}$ is from the anti-diagonal. Memorize as down arrows minus up arrows.
Cramer's $2 \times 2$ rule in determinant notation is

$$
x=\frac{\left|\begin{array}{ll}
e & b  \tag{3}\\
f & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}
$$

## Relation to Inverse Matrices

System
(4)

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

can be expressed as the vector-matrix system $\boldsymbol{A} \overrightarrow{\mathbf{u}}=\overrightarrow{\mathrm{b}}$ where

$$
A=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right), \quad \overrightarrow{\mathbf{u}}=\binom{x}{y}, \quad \overrightarrow{\mathrm{~b}}=\binom{e}{f}
$$

Inverse matrix theory implies

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right), \quad \overrightarrow{\mathrm{u}}=A^{-1} \overrightarrow{\mathrm{~b}}=\frac{1}{a d-b c}\binom{d e-b f}{a f-c e}
$$

Cramer's Rule is a compact summary of the unique solution of system (4).

## Unique Solution of an $\boldsymbol{n} \times \boldsymbol{n}$ System

System

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}  \tag{5}\\
\vdots \\
\vdots \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gather*}
$$

can be written as an $\boldsymbol{n} \times \boldsymbol{n}$ vector-matrix equation $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$, where $\overrightarrow{\mathrm{x}}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ and $\overrightarrow{\mathrm{b}}=\left(b_{1}, \ldots, b_{n}\right)$. The system has a unique solution provided the determinant of coefficients $\boldsymbol{\Delta}=|\boldsymbol{A}|$ is nonzero, and then Cramer's Rule for $\boldsymbol{n} \times \boldsymbol{n}$ systems gives

$$
\begin{equation*}
x_{1}=\frac{\Delta_{1}}{\Delta}, \quad x_{2}=\frac{\Delta_{2}}{\Delta}, \ldots, \quad x_{n}=\frac{\Delta_{n}}{\Delta} \tag{6}
\end{equation*}
$$

Symbol $\boldsymbol{\Delta}_{j} \underset{\vec{b}}{ }|\boldsymbol{B}|$, where matrix $\boldsymbol{B}$ has the same columns as matrix $\boldsymbol{A}$, except $\operatorname{col}(B, j)=\overrightarrow{\mathrm{b}}$.

Determinants of Order $n$
Determinants for $n \times n$ matrices will be defined shortly; intuition from the $2 \times 2$ case and Sarrus' rule should suffice for the moment.

## Determinant Notation for Cramer's Rule

$\qquad$
The determinant of coefficients for system $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ is denoted by

$$
\Delta=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n}  \tag{7}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

The other $\boldsymbol{n}$ determinants in Cramer's rule (6) are given by
(8) $\quad \Delta_{1}=\left|\begin{array}{cccc}b_{1} & a_{12} & \cdots & a_{1 n} \\ b_{2} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{n} & a_{n 2} & \cdots & a_{n n}\end{array}\right|, \ldots, \Delta_{n}=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & b_{1} \\ a_{21} & a_{22} & \cdots & b_{2} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & b_{n}\end{array}\right|$.

## Important: Use vertical bars for determinants. Use parentheses or brackets for matrices.

## College Algebra Definition of Determinant

$\qquad$
Given an $\boldsymbol{n} \times \boldsymbol{n}$ matrix $\boldsymbol{A}$, define

$$
\begin{equation*}
|A|=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{parity}(\sigma)} a_{1 \sigma_{1}} \cdots a_{n \sigma_{n}} \tag{9}
\end{equation*}
$$

Formula explained:

- Symbol $\boldsymbol{a}_{i j}$ denotes the element in row $\boldsymbol{i}$ and column $\boldsymbol{j}$ of the matrix $\boldsymbol{A}$.
- The symbol $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ stands for a rearrangement of the subscripts 1 , $2, \ldots, n$.
- Symbol $S_{n}$ is the set of all possible rearrangements $\sigma$.
- Nonnegative integer parity $(\sigma)$ is determined by counting the minimum number of pairwise interchanges required to assemble the list of integers $\sigma_{1}, \ldots, \sigma_{n}$ into natural order $\mathbf{1}, \ldots, \boldsymbol{n}$.


## College Algebra Definition and Sarrus' $3 \times 3$ Rule

For a $\mathbf{3} \times 3$ matrix, the College Algebra formula reduces to Sarrus' $3 \times 3$ Rule
(10)

$$
\begin{aligned}
|A|= & \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
= & a_{11} a_{22} a_{33}+a_{21} a_{32} a_{13}+a_{31} a_{12} a_{23} \\
& -a_{11} a_{32} a_{23}-a_{21} a_{12} a_{33}-a_{31} a_{22} a_{13} .
\end{aligned}
$$

## Diagram for Sarrus' $\mathbf{3} \times \mathbf{3}$ Rule

The number $|\boldsymbol{A}|$ in the $3 \times 3$ case only can be computed by the algorithm in Figure 2, which parallels the one for $2 \times 2$ matrices. The $5 \times 3$ array is made by copying the first two rows of $\boldsymbol{A}$ into rows 4 and 5 .


Figure 2. Sarrus' rule diagram for $\mathbf{3} \times \mathbf{3}$ matrices, which gives $|A|=(a+b+c)-(d+e+f)$. Memorize as down minus up

Warning: There is no Sarrus' rule diagram for $\mathbf{4} \times 4$ or larger matrices!

## Transpose Rule

A consequence of the college algebra definition of determinant is the relation

$$
|\boldsymbol{A}|=\left|\boldsymbol{A}^{T}\right|
$$

where $\boldsymbol{A}^{\boldsymbol{T}}$ means the transpose of $\boldsymbol{A}$, obtained by swapping rows and columns. This relation implies the following.

All determinant theory results for rows also apply to columns.

## How to Compute the Value of any Determinant

$\qquad$

- Four Rules. These are the Triangular Rule, Combination Rule, Multiply Rule and the Swap Rule.
- Special Rules. These apply to evaluate a determinant as zero.
- Cofactor Expansion. This is an iterative scheme which reduces computation of a determinant to a number of smaller determinants.
- Hybrid Method. The four rules and the cofactor expansion are combined.


## Four Rules

Triangular The value of $|\boldsymbol{A}|$ for either an upper triangular or a lower triangular matrix $\boldsymbol{A}$ is the product of the diagonal elements:

$$
|A|=a_{11} a_{22} \cdots a_{n n}
$$

This is a one-arrow Sarrus' rule.
Swap
If $\boldsymbol{B}$ results from $\boldsymbol{A}$ by swapping two rows, then

$$
|A|=(-1)|B|
$$

Combination The value of $|A|$ is unchanged by adding a multiple of a row to a different row.
Multiply

If one row of $\boldsymbol{A}$ is multiplied by constant $\boldsymbol{c}$ to create matrix $\boldsymbol{B}$, then

$$
|B|=c|A| .
$$

1 Example (Four Properties) Apply the four properties of a determinant to justify the formula
$\left|\begin{array}{lll}12 & 6 & 0 \\ 11 & 5 & 1 \\ 10 & 2 & 2\end{array}\right|=24$.

Solution: Let $D$ denote the value of the determinant. Then

$$
\begin{aligned}
D & =\left|\begin{array}{rrr}
12 & 6 & 0 \\
11 & 5 & 1 \\
10 & 2 & 2
\end{array}\right| \\
& =\left|\begin{array}{rrr}
12 & 6 & 0 \\
-1 & -1 & 1 \\
-2 & -4 & 2
\end{array}\right| \quad \begin{array}{l}
\text { combo (1, 2, }-1), ~ c o m b o ~(1, ~ 3, ~ \\
\text { nant unchanged. }
\end{array} \\
& =6\left|\begin{array}{rrr}
2 & 1 & 0 \\
-1 & -1 & 1 \\
-2 & -4 & 2
\end{array}\right| \quad \text { Multiply rule } m=1 / 6 \text { on row } 1 \text { fact } \\
& =6\left|\begin{array}{rrr}
0 & -1 & 2 \\
-1 & -1 & 1 \\
0 & -3 & 2
\end{array}\right| \quad \text { combo (1, 3, 1), combo (2, 1, 2) } \\
& =-6\left|\begin{array}{rrr}
-1 & -1 & 1 \\
0 & -1 & 2 \\
0 & -3 & 2
\end{array}\right| \quad \text { swap }(1,2) \text {. Swap changes the si } \\
& =6\left|\begin{array}{rrr}
1 & 1 & -1 \\
0 & -1 & 2 \\
0 & -3 & 2
\end{array}\right| \quad \text { Multiply rule } m=-1 \text { on row } 1 . \\
& =6\left|\begin{array}{rrr}
1 & 1 & -1 \\
0 & -1 & 2 \\
0 & 0 & -4
\end{array}\right| \quad \text { combo }(2,3,-3) . \\
& =6(1)(-1)(-4)=24 \text { Triangular rule. Formula verified. }
\end{aligned}
$$

## Elementary Matrices and the Four Rules

The four rules can be stated in terms of elementary matrices as follows.
Triangular The value of $|\boldsymbol{A}|$ for either an upper triangular or a lower triangular matrix $\boldsymbol{A}$ is the product of the diagonal elements: $|\boldsymbol{A}|=a_{11} a_{22} \cdots a_{n n}$. This is a one-arrow Sarrus' rule valid for dimension $\boldsymbol{n}$.
Swap If $\boldsymbol{E}$ is an elementary matrix for a swap rule, then $|\boldsymbol{E A}|=$ $(-1)|A|$.
Combination If $\boldsymbol{E}$ is an elementary matrix for a combination rule, then $|\boldsymbol{E A}|=|\boldsymbol{A}|$.
Multiply If $\boldsymbol{E}$ is an elementary matrix for a multiply rule with multiplier $\boldsymbol{m} \neq 0$, then $|\boldsymbol{E A}|=\boldsymbol{m}|\boldsymbol{A}|$.

Because $|\boldsymbol{E}|=\mathbf{1}$ for a combination rule, $|\boldsymbol{E}|=-\mathbf{1}$ for a swap rule and $|\boldsymbol{E}|=\boldsymbol{c}$ for a multiply rule with multiplier $\boldsymbol{c} \neq \mathbf{0}$, it follows that for any elementary matrix $\boldsymbol{E}$ there is the determinant multiplication rule

$$
|E A|=|E||A| .
$$

## Special Determinant Rules

The results are stated for rows but also hold for columns, because $|A|=\left|A^{T}\right|$.

Zero row
Duplicate rows
RREF $\neq I$
Common factor
If one row of $\boldsymbol{A}$ is zero, then $|\boldsymbol{A}|=0$.
If two rows of $A$ are identical, then $|A|=0$.
If $\operatorname{rref}(A) \neq I$, then $|A|=0$.
The relation $|\boldsymbol{A}|=\boldsymbol{c}|\boldsymbol{B}|$ holds, provided $\boldsymbol{A}$ and $\boldsymbol{B}$ differ only in one row, say row $j$, for which $\operatorname{row}(A, j)=$ $c \operatorname{row}(B, j)$.
Row linearity
The relation $|\boldsymbol{A}|=|\boldsymbol{B}|+|\boldsymbol{C}|$ holds, provided $\boldsymbol{A}, \boldsymbol{B}$ and $C$ differ only in one row, say row $j$, for which $\operatorname{row}(A, j)=$ $\operatorname{row}(B, j)+\operatorname{row}(C, j)$.

## Cofactor Expansion for $\mathbf{3} \times \mathbf{3}$ Matrices

This is a review the college algebra topic, where the dimension of $\boldsymbol{A}$ is $\mathbf{3}$.
Cofactor row expansion means the following formulas are valid:

$$
\begin{aligned}
|A| & =\left|\begin{array}{l}
a_{11} a_{12} a_{13} \\
a_{21} a_{22} a_{23} \\
a_{31} a_{32} a_{33}
\end{array}\right| \\
& =a_{11}(+1)\left|\begin{array}{l}
a_{22} a_{23} \\
a_{32} a_{33}
\end{array}\right|+a_{12}(-1)\left|\begin{array}{l}
a_{21} a_{23} \\
a_{31} a_{33}
\end{array}\right|+a_{13}(+1)\left|\begin{array}{l}
a_{21} a_{22} \\
a_{31} a_{32}
\end{array}\right| \\
& =a_{21}(-1)\left|\begin{array}{l}
a_{12} a_{13} \\
a_{32} a_{33}
\end{array}\right|+a_{22}(+1)\left|\begin{array}{l}
a_{11} a_{13} \\
a_{31} a_{33}
\end{array}\right|+a_{23}(-1)\left|\begin{array}{l}
a_{11} a_{12} \\
a_{31} a_{32}
\end{array}\right| \\
& =a_{31}(+1)\left|\begin{array}{l}
a_{12} a_{13} \\
a_{22} a_{23}
\end{array}\right|+a_{32}(-1)\left|\begin{array}{l}
a_{11} a_{13} \\
a_{21} a_{23}
\end{array}\right|+a_{33}(+1)\left|\begin{array}{l}
a_{11} a_{12} \\
a_{21} a_{22}
\end{array}\right|
\end{aligned}
$$

The formulas expand a $3 \times 3$ determinant in terms of $2 \times 2$ determinants, along a row of $\boldsymbol{A}$. The attached signs $\pm 1$ are called the checkerboard signs, to be defined shortly. The $2 \times 2$ determinants are called minors of the $3 \times 3$ determinant $|A|$. The checkerboard sign together with a minor is called a cofactor.

## Cofactor Expansion Illustration

Cofactor expansion formulas are generally used when a row has one or two zeros, making it unnecessary to evaluate one or two of the $2 \times 2$ determinants in the expansion. To illustrate, row 1 cofactor expansion gives

$$
\begin{aligned}
\left|\begin{array}{lll}
3 & 0 & 0 \\
2 & 1 & 7 \\
5 & 4 & 8
\end{array}\right| & =3(+1)\left|\begin{array}{ll}
1 & 7 \\
4 & 8
\end{array}\right|+0(-1)\left|\begin{array}{ll}
2 & 7 \\
5 & 8
\end{array}\right|+0(+1)\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =3(+1)(8-28)+0+0 \\
& =-60
\end{aligned}
$$

What has been said for rows also applies to columns, due to the transpose formula

$$
|A|=\left|A^{T}\right|
$$

Minor
The $(n-1) \times(n-1)$ determinant obtained from $|A|$ by striking out row $i$ and column $j$ is called the $(i, j)$-minor of $\boldsymbol{A}$ and denoted $\operatorname{minor}(A, i, j)$. Literature might use $\boldsymbol{M}_{i j}$ for a minor.

## Cofactor

The $(i, j)$-cofactor of $A$ is $\operatorname{cof}(A, i, j)=(-1)^{i+j} \operatorname{minor}(A, i, j)$.
Multiplicative factor $(-1)^{i+j}$ is called the checkerboard sign, because its value can be determined by counting plus, minus, plus, etc., from location $(1,1)$ to location $(i, j)$ in any checkerboard fashion.

## Expansion of Determinants by Cofactors

$$
\begin{equation*}
|A|=\sum_{j=1}^{n} a_{k j} \operatorname{cof}(A, k, j), \quad|A|=\sum_{i=1}^{n} a_{i \ell} \operatorname{cof}(A, i, \ell) \tag{11}
\end{equation*}
$$

In (11), $\mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}, \mathbf{1} \leq \boldsymbol{\ell} \leq \boldsymbol{n}$. The first expansion is called a cofactor row expansion and the second is called a cofactor column expansion. The value $\operatorname{cof}(\boldsymbol{A}, \boldsymbol{i}, \boldsymbol{j})$ is the cofactor of element $\boldsymbol{a}_{i j}$ in $|\boldsymbol{A}|$, that is, the checkerboard sign times the minor of $a_{i j}$.

2 Example (Hybrid Method) Justify by cofactor expansion and the four properties the identity

$$
\left|\begin{array}{ccc}
10 & 5 & 0 \\
11 & 5 & a \\
10 & 2 & b
\end{array}\right|=5(6 a-b)
$$

Solution: Let $\boldsymbol{D}$ denote the value of the determinant. Then

$$
\begin{aligned}
D & =\left|\begin{array}{rrr}
10 & 5 & 0 \\
11 & 5 & a \\
10 & 2 & b
\end{array}\right| & & \text { Given. } \\
& =\left|\begin{array}{rrr}
10 & 5 & 0 \\
1 & 0 & a \\
0 & -3 & b
\end{array}\right| & & \text { Combination leaves the determinant unchanged: } \\
& =\left|\begin{array}{rrr}
0 & 5 & -10 a \\
1 & 0 & a \\
0 & -3 & b
\end{array}\right| & & \text { combo }(1,2,-1), \text { combo }(1,3,-1) . \\
& =(1)(-1)\left|\begin{array}{rr}
5 & -10 a \\
-3 & b
\end{array}\right| & & \text { Cofactor expansion on column } 1 . \\
& =(1)(-1)(5 b-30 a) & & \text { Sarrus' rule for } n=2 . \\
& =5(6 a-b) . & & \text { Formula verified. } .
\end{aligned}
$$

3 Example (Cramer's Rule) Solve by Cramer's rule the system of equations

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+x_{3}-x_{4}=1 \\
& x_{1}+x_{2}-x_{4}=-1 \\
& x_{1}+3 x_{2}+x_{3}+x_{4}= 3 \\
& x_{3}-x_{4}= 0
\end{aligned}
$$

verifying $x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=2$.

Solution: Form the four determinants $\Delta_{1}, \ldots, \Delta_{4}$ from the base determinant $\Delta$ as follows:

$$
\begin{gathered}
\Delta=\left|\begin{array}{rrrr}
2 & 3 & 1 & -1 \\
1 & 1 & 0 & -1 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & -1
\end{array}\right|, \\
\Delta_{1}=\left|\begin{array}{rrrr}
1 & 3 & 1 & -1 \\
-1 & 1 & 0 & -1 \\
3 & 3 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{rrrr}
2 & 1 & 1 & -1 \\
1 & -1 & 0 & -1 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & -1
\end{array}\right|, \\
\Delta_{3}=\left|\begin{array}{rrrr}
2 & 3 & 1 & -1 \\
1 & 1 & -1 & -1 \\
0 & 3 & 3 & 1 \\
1 & 0 & 0 & -1
\end{array}\right|, \quad \Delta_{4}=\left|\begin{array}{rrrr}
2 & 3 & 1 & 1 \\
1 & 1 & 0 & -1 \\
0 & 3 & 1 & 3 \\
1 & 0 & 1 & 0
\end{array}\right|
\end{gathered}
$$

Five repetitions of the methods used in the previous examples give the answers $\Delta=-2, \Delta_{1}=-2, \Delta_{2}=0$, $\Delta_{3}=-2, \Delta_{4}=-4$, therefore Cramer's rule implies the solution

$$
x_{1}=\frac{\Delta_{1}}{\Delta}, \quad x_{2}=\frac{\Delta_{2}}{\Delta}, \quad x_{3}=\frac{\Delta_{3}}{\Delta}, \quad x_{4}=\frac{\Delta_{4}}{\Delta} .
$$

Then $x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=2$.

## Maple Code for Cramer's Rule

The details of the computation above can be checked in computer algebra system maple as follows.

```
with(LinearAlgebra):
A:=Matrix([
[2, 3, 1, -1], [1, 1, 0, -1],
[0, 3, 1, 1], [1, 0, 1, -1]]);
Delta:= Determinant(A);
b:=Vector([1,-1,3,0]):
B1:=A: Column(B1,1):=b:
Delta1:=Determinant(B1);
x[1]:=Deltal/Delta;
LinearSolve(A,b);
```


## The Adjugate Matrix

The adjugate $\operatorname{adj}(\boldsymbol{A})$ of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix $\boldsymbol{A}$ is the transpose of the matrix of cofactors,

$$
\operatorname{adj}(A)=\left(\begin{array}{cccc}
\operatorname{cof}(A, 1,1) & \operatorname{cof}(A, 1,2) & \cdots & \operatorname{cof}(A, 1, n) \\
\operatorname{cof}(A, 2,1) & \operatorname{cof}(A, 2,2) & \cdots & \operatorname{cof}(A, 2, n) \\
\vdots & \vdots & \cdots & \vdots \\
\operatorname{cof}(A, n, 1) & \operatorname{cof}(A, n, 2) & \cdots & \operatorname{cof}(A, n, n)
\end{array}\right)^{T} .
$$

A cofactor $\operatorname{cof}(A, i, j)$ is the checkerboard sign $(-1)^{i+j}$ times the corresponding minor determinant minor $(A, i, j)$.

Adjugate of a $2 \times 2$

$$
\operatorname{adj}\left(\begin{array}{ll}
\boldsymbol{a}_{11} & \boldsymbol{a}_{12} \\
\boldsymbol{a}_{21} & \boldsymbol{a}_{22}
\end{array}\right)=\left(\begin{array}{rr}
\boldsymbol{a}_{22} & -\boldsymbol{a}_{12} \\
-\boldsymbol{a}_{21} & \boldsymbol{a}_{11}
\end{array}\right) \quad \begin{aligned}
& \text { In words: swap the diagonal elements and } \\
& \text { change the sign of the off-diagonal elements. }
\end{aligned}
$$

Adjugate Formula for the Inverse
For any $\boldsymbol{n} \times \boldsymbol{n}$ matrix

$$
A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=|A| I
$$

The equation is valid even if $\boldsymbol{A}$ is not invertible. The relation suggests several ways to find $|\boldsymbol{A}|$ from $\boldsymbol{A}$ and $\operatorname{adj}(\boldsymbol{A})$ with one dot product.

For an invertible matrix $A$, the relation implies $A^{-1}=\operatorname{adj}(A) /|A|$ :

$$
A^{-1}=\frac{1}{|A|}\left(\begin{array}{cccc}
\operatorname{cof}(A, 1,1) & \operatorname{cof}(A, 1,2) & \cdots & \operatorname{cof}(A, 1, n) \\
\operatorname{cof}(A, 2,1) & \operatorname{cof}(A, 2,2) & \cdots & \operatorname{cof}(A, 2, n) \\
\vdots & \vdots & \cdots & \vdots \\
\operatorname{cof}(A, n, 1) & \operatorname{cof}(A, n, 2) & \cdots & \operatorname{cof}(A, n, n)
\end{array}\right)^{T}
$$

## Application: Adjugate Shortcut

Given $A=\left(\begin{array}{lrr}1 & -1 & 2 \\ 2 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$, then we can compute $\operatorname{adj}(A)=\left(\begin{array}{rrr}1 & 3 & -2 \\ -2 & 1 & 4 \\ 2 & -1 & 3\end{array}\right)$.
Suppose that we mark some unknown entries in $\operatorname{adj}(A)$ by ? and write $|\boldsymbol{A}|$ for the determinant of $A$. Then the formula $A \operatorname{adj}(A)=\operatorname{adj}(A) A=|A| I$ becomes

$$
\left(\begin{array}{rrr}
1 & -1 & 2 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
? ? & 3 & ? \\
? & 1 & ? \\
? & -1 & ?
\end{array}\right)=\left(\begin{array}{rrr}
? & 3 & ? \\
? & 1 & ? \\
? & -1 & ?
\end{array}\right)\left(\begin{array}{rrr}
1 & 3 & -2 \\
-2 & 1 & 4 \\
2 & -1 & 3
\end{array}\right)=\left(\begin{array}{rrr}
|A| & 0 & 0 \\
0 \mid & A \mid & 0 \\
0 & 0 & |A|
\end{array}\right) .
$$

While the second product $\operatorname{adj}(\boldsymbol{A}) \boldsymbol{A}$ contains useless information, the first product gives $\operatorname{row}(A, 2) \operatorname{col}(\operatorname{adj}(A), 2)=|A|$. Because the values are known, then $|A|=6+$ $1+0=7$.

## Knowing $\boldsymbol{A}$ and $\operatorname{adj}(\boldsymbol{A})$ gives the value of $|\boldsymbol{A}|$ in one dot product.

## Elementary Matrices

## Theorem 1 (Determinants and Elementary Matrices)

Let $\boldsymbol{E}$ be an $\boldsymbol{n} \times \boldsymbol{n}$ elementary matrix. Then
Combination $\quad|E|=1$
Multiply $\quad|\boldsymbol{E}|=\boldsymbol{m}$ for multiplier $\boldsymbol{m}$.
Swap
Product

$$
|E|=-1
$$

$|\boldsymbol{E} \boldsymbol{X}|=|\boldsymbol{E}||\boldsymbol{X}|$ for all $\boldsymbol{n} \times \boldsymbol{n}$ matrices $\boldsymbol{X}$.
Theorem 2 (Determinants and Invertible Matrices)
Let $\boldsymbol{A}$ be a given invertible matrix. Then

$$
|A|=\frac{(-1)^{s}}{m_{1} m_{2} \cdots m_{r}}
$$

where $s$ is the number of swap rules applied and $\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \ldots, \boldsymbol{m}_{r}$ are the nonzero multipliers used in multiply rules when $\boldsymbol{A}$ is reduced to $\operatorname{rref}(\boldsymbol{A})$.

## Determinant Products

## Theorem 3 (Determinant Product Rule)

Let $\boldsymbol{A}$ and $\boldsymbol{B}$ be given $\boldsymbol{n} \times \boldsymbol{n}$ matrices. Then

$$
|A B|=|A||B|
$$

## Proof

Assume $\boldsymbol{A}^{-1}$ does not exist. Then $\boldsymbol{A}$ has zero determinant, which implies $|\boldsymbol{A B}|=0$. If $|\boldsymbol{B}|=0$, then $\boldsymbol{B} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has infinitely many solutions, in particular a nonzero solution $\overrightarrow{\mathrm{x}}$. Multiply $\boldsymbol{B} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ by $\boldsymbol{A}$, then $\boldsymbol{A} \boldsymbol{B} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ which implies $\boldsymbol{A B}$ is not invertible. Then the identity $|\boldsymbol{A B}|=|\boldsymbol{A}||\boldsymbol{B}|$ holds, because both sides are zero. If $|\boldsymbol{B}| \neq 0$ but $|A|=0$, then there is a nonzero $\vec{y}$ with $A \vec{y}=\overrightarrow{0}$. Define $\overrightarrow{\mathrm{x}}=B^{-1} \overrightarrow{\mathrm{y}}$. Then $A B \overrightarrow{\mathrm{x}}=A \overrightarrow{\mathrm{y}}=\overrightarrow{0}$, with $\overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$, which implies $\boldsymbol{A} \boldsymbol{B}$ is not invertible, and as earlier in this paragraph, the identity holds. This completes the proof when $\boldsymbol{A}$ is not invertible.

Assume $\boldsymbol{A}$ is invertible. In particular, $\operatorname{rref}\left(\boldsymbol{A}^{-1}\right)=\boldsymbol{I}$. Write $\boldsymbol{I}=\operatorname{rref}\left(\boldsymbol{A}^{-1}\right)=\boldsymbol{E}_{1} \boldsymbol{E}_{\mathbf{2}} \cdots \boldsymbol{E}_{\boldsymbol{k}} \boldsymbol{A}^{-1}$ for elementary matrices $\boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{\boldsymbol{k}}$. Then $\boldsymbol{A}=\boldsymbol{E}_{\mathbf{1}} \boldsymbol{E}_{\mathbf{2}} \cdots \boldsymbol{E}_{k}$ and

$$
\begin{equation*}
A B=E_{1} E_{2} \cdots E_{k} B \tag{12}
\end{equation*}
$$

The theorem follows from repeated application of the basic identity $|\boldsymbol{E} \boldsymbol{X}|=|\boldsymbol{E}||\boldsymbol{X}|$ to relation (12), because

$$
|A B|=\left|E_{1}\right| \cdots\left|E_{k}\right||B|=|A||B| .
$$

