Elementary Matrices and Toolkit Sequences

- Elementary Matrices
- Definition of elementary matrix
- Computer algebra systems and elementary matrices
- Constructing elementary matrices \boldsymbol{E} and their inverses \boldsymbol{E}^{-1}
- Fundamental Theorem on Elementary Matrices
- A certain 6-frame toolkit sequence.
- Toolkit Sequence Details
- Fundamental Theorem Illustrated
- The RREF Inverse Method

Elementary Matrices

Definition. An elementary matrix \boldsymbol{E} is the result of applying a combination, multiply or swap rule to the identity matrix.
An elementary matrix is then the second frame after a combo, swap or mult toolkit operation which has been applied to a first frame equal to the identity matrix.

Example:

$$
\begin{array}{ll}
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { First frame = identity matrix. } \\
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right) & \begin{array}{l}
\text { Second frame } \\
\text { Elementary combo matrix } \\
\text { combo }(1,3,-5)
\end{array}
\end{array}
$$

Computer algebra systems and elementary matrices
The computer algebra system maple displays typical 4×4 elementary matrices ($\mathrm{C}=$ Combination, $\mathrm{M}=$ Multiply, $\mathrm{S}=\mathrm{Swap}$) as follows.

```
with(linalg): 隹h(LinearAlgebra):
Id:=diag(1,1,1,1); Id:=IdentityMatrix(4);
C:=addrow(Id,2,3, c); C:=RowOperation(Id,[3,2],c);
M:=mulrow(Id,3,m);
S:=swaprow(Id,1,4); S:=RowOperation(Id,[4,1]);
```

The answers:

$$
\begin{gathered}
C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad M=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & m & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
S=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Constructing elementary matrices E and their inverses E^{-1}
Mult \quad Change a one in the identity matrix to symbol $\boldsymbol{m} \neq 0$.
Combo Change a zero in the identity matrix to symbol \boldsymbol{c}.
Swap Interchange two rows of the identity matrix.
Constructing E^{-1} from elementary matrix E
Mult Change diagonal multiplier $m \neq 0$ in E to $1 / m$.
Combo Change multiplier \boldsymbol{c} in \boldsymbol{E} to $-\boldsymbol{c}$.
Swap The inverse of \boldsymbol{E} is \boldsymbol{E} itself.

Fundamental Theorem on Elementary Matrices

\qquad
Theorem 1 (Toolkit sequences and elementary matrices)
In a Toolkit sequence, let the second frame \boldsymbol{A}_{2} be obtained from the first frame \boldsymbol{A}_{1} by a combo, swap or mult toolkit operation. Let \boldsymbol{n} equal the row dimenson of \boldsymbol{A}_{1}. Then there is correspondingly an $\boldsymbol{n} \times \boldsymbol{n}$ combo, swap or mult elementary matrix \boldsymbol{E} such that

$$
A_{2}=E A_{1} .
$$

Theorem 2 (The rref and elementary matrices)

Let \boldsymbol{A} be a given matrix of row dimension \boldsymbol{n}. Then there exist $\boldsymbol{n} \times \boldsymbol{n}$ elementary matrices $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \ldots, \boldsymbol{E}_{k}$ such that

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A
$$

Proof of Theorem 1

\qquad
The first result is the observation that left multiplication of matrix \boldsymbol{A}_{1} by elementary matrix \boldsymbol{E} gives the answer $\boldsymbol{A}_{\mathbf{2}}=\boldsymbol{E} \boldsymbol{A}_{1}$ which is obtained by applying the corresponding combo, swap or mult toolkit operation. This fact is discovered by doing examples, then a formal proof can be constructed (not presented here).

Proof of Theorem 2

The second result applies the first result multiple times to obtain elementary matrices \boldsymbol{E}_{1}, $\boldsymbol{E}_{2}, \ldots$ which represent the multiply, combination and swap operations performed in the toolkit sequence which take the First Frame $\boldsymbol{A}_{1}=\boldsymbol{A}$ into the Last Frame $\boldsymbol{A}_{\boldsymbol{k + 1}}=$ $\operatorname{rref}\left(\boldsymbol{A}_{1}\right)$. Combining the identities

$$
A_{2}=E_{1} A_{1}, \quad A_{3}=E_{2} A_{2}, \quad \ldots, \quad A_{k+1}=E_{k} A_{k}
$$

gives the matrix multiply equation

$$
\boldsymbol{A}_{k+1}=\boldsymbol{E}_{k} \boldsymbol{E}_{k-1} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}_{1}
$$

or equivalently the theorem's result, because $\boldsymbol{A}_{k+1}=\operatorname{rref}(\boldsymbol{A})$ and $\boldsymbol{A}_{1}=\boldsymbol{A}$.

A certain 6-frame toolkit sequence
$\boldsymbol{A}_{1}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 0 \\ 3 & 6 & 3\end{array}\right) \quad$ Frame 1, original matrix.
$\boldsymbol{A}_{2}=\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & 0 & -6 \\ 3 & 6 & 3\end{array}\right) \quad$ Frame 2, combo(1,2,-2).
$\boldsymbol{A}_{3}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 0 & 1 \\ 3 & 6 & 3\end{array}\right) \quad$ Frame 3, mult(2,-1/6).
$\boldsymbol{A}_{4}=\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & -6\end{array}\right) \quad$ Frame 4, combo $(1,3,-3)$.
$\boldsymbol{A}_{5}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \quad$ Frame 5, combo(2,3,-6).
$\boldsymbol{A}_{6}=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \quad$ Frame 6, combo(2,1,-3). Found $\operatorname{rref}\left(\boldsymbol{A}_{1}\right)$.

Continued

The corresponding 3×3 elementary matrices are
$\boldsymbol{E}_{1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ Frame 2, combo(1,2,-2) applied to I.
$\boldsymbol{E}_{2}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 / 6 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ Frame 3, mult(2,-1/6) applied to I.
$\boldsymbol{E}_{3}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right) \quad$ Frame 4, combo(1,3,-3) applied to I.
$\boldsymbol{E}_{4}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -6 & 1\end{array}\right) \quad$ Frame 5, combo(2,3,-6) applied to I.
$\boldsymbol{E}_{5}=\left(\begin{array}{rrr}1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ Frame 6, combo(2,1,-3) applied to I.

Frame Sequence Details

$$
\begin{array}{ll}
\boldsymbol{A}_{2}=\boldsymbol{E}_{1} \boldsymbol{A}_{1} & \text { Frame } 2, \boldsymbol{E}_{1} \text { equals co } \\
\boldsymbol{A}_{3}=\boldsymbol{E}_{2} \boldsymbol{A}_{2} & \text { Frame } 3, \boldsymbol{E}_{2} \text { equals m } \\
\boldsymbol{A}_{4}=\boldsymbol{E}_{3} \boldsymbol{A}_{3} & \text { Frame } 4, \boldsymbol{E}_{3} \text { equals co } \\
\boldsymbol{A}_{5}=\boldsymbol{E}_{4} \boldsymbol{A}_{4} & \text { Frame 5, } \boldsymbol{E}_{4} \text { equals co } \\
\boldsymbol{A}_{6}=\boldsymbol{E}_{5} \boldsymbol{A}_{5} & \text { Frame 6, } \boldsymbol{E}_{5} \text { equals co } \\
\boldsymbol{A}_{6}=\boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{1}} & \text { Summary frames 1-6. }
\end{array}
$$

Then

$$
\operatorname{rref}\left(\boldsymbol{A}_{1}\right)=\boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}_{1}
$$

which is the result of the Theorem.

Fundamental Theorem Illustrated

The summary:

$$
A_{6}=\left(\begin{array}{lll}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -6 & 1
\end{array}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -\frac{1}{6} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A_{1}
$$

Because $\boldsymbol{A}_{6}=\operatorname{rref}\left(\boldsymbol{A}_{1}\right)$, the above equation gives the inverse relationship

$$
A_{1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} \operatorname{rref}\left(A_{1}\right)
$$

Each inverse matrix is simplified by the rules for constructing \boldsymbol{E}^{-1} from elementary matrix \boldsymbol{E}, the result being

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -6 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 6 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \operatorname{rref}\left(A_{1}\right)
$$

Theorem 3 (RREF Inverse Method)

$$
\operatorname{rref}(\langle\boldsymbol{A} \mid \boldsymbol{I}\rangle)=\langle\boldsymbol{I} \mid \boldsymbol{B}\rangle \quad \text { if and only if } \quad \boldsymbol{A B}=\boldsymbol{I}
$$

Proof: For any matrix \boldsymbol{E} there is the matrix multiply identity

$$
E\langle C \mid D\rangle=\langle E C \mid E D\rangle
$$

This identity is proved by arguing that each side has identical columns. For example, $\operatorname{col}($ LHS, 1$)=$ $E \operatorname{col}(C, 1)=\operatorname{col}($ RHS, 1).

Assume $C=\langle\boldsymbol{A} \mid \boldsymbol{I}\rangle$ satisfies $\operatorname{rref}(\boldsymbol{C})=\langle\boldsymbol{I} \mid \boldsymbol{B}\rangle$. The fundamental theorem of elementary matrices implies $E_{k} \cdots E_{1} C=\operatorname{rref}(C)$. Then

$$
\operatorname{rref}(C)=\left\langle E_{k} \cdots E_{1} A \mid E_{k} \cdots E_{1} I\right\rangle=\langle I \mid B\rangle
$$

implies that $\boldsymbol{E}_{k} \cdots \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{I}$ and $\boldsymbol{E}_{k} \cdots \boldsymbol{E}_{1} \boldsymbol{I}=\boldsymbol{B}$. Together, $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$ and then \boldsymbol{B} is the inverse of \boldsymbol{A}.
Conversely, assume that $\boldsymbol{A B}=\boldsymbol{I}$. Then \boldsymbol{A} has inverse \boldsymbol{B}. The fundamental theorem of elementary matrices implies the identity $E_{k} \cdots E_{1} A=\operatorname{rref}(\boldsymbol{A})=I$. It follows that $B=E_{k} \cdots E_{1}$. Then $\operatorname{rref}(C)=E_{k} \cdots E_{1}<$ $A|I\rangle=<E_{k} \cdots E_{1} A\left|E_{k} \cdots E_{1} I>=<I\right| B>$.

