
Basis, Dimension, Kernel, Image

• Definitions: Pivot, Basis, Rank and Nullity

• Main Results: Dimension, Pivot Theorem

• Main Results: Rank-Nullity, Row Rank, Pivot Method

• Definitions: Kernel, Image, rowspace, colspace

• How to Compute: Nullspace, Rowspace, Colspace

• Dimension, Kernel and Image

• Testing Bases for Equivalence

• Equivalent Bases: Computer Illustration

• A False Test for Equivalent Bases



Definitions: Pivot and Basis

Pivot of A A column in matrix A is called a pivot column of A provided the
corresponding column in rref(A) contains a leading one.

Basis of V It is an independent set~v1, . . . ,~vk from data set V whose linear
combinations generate all data items in V . Briefly: the vectors
~v1, . . . , ~vk are independent and span V .

Definitions: Rank and Nullity

rank(A) The number of leading ones in rref(A)

nullity(A) The number of columns of A minus rank(A)



Main Results: Dimension, Pivot Theorem

Theorem 1 (Dimension)
If a vector space V has an independent spanning set ~v1, . . . , ~vp and another
independent spanning set ~u1, . . . , ~uq, then p = q. The dimension of V is this
unique number p. We write p = dim(V ).

Theorem 2 (The Pivot Theorem)
• The pivot columns of a matrix A are linearly independent.

• A non-pivot column of A is a linear combination of the pivot columns of A.

The proofs can be found in web documents and also in the textbook by Edwards and Penny
or in David Lay’s textbook. Self-contained proofs of the statements of the pivot theorem
appear later in these slides.



Lemma 1 Let B be invertible and ~v1, . . . , ~vp independent. Then B~v1, . . . , B~vp

are independent.

Proof of Independence of the Pivot Columns
Consider the fundamental toolkit sequence identity rref(A) = EA where E =
Ek · · ·E2E1 is a product of elementary matrices. Let B = E−1. Then

col(rref(A), j) = E col(A, j)

implies that a pivot column j of A satisfies

col(A, j) = B col(I, j).

Because the columns of I are independent, then also the pivot columns of A are indepen-
dent, by the Lemma.



Proof of Non-Pivot Column Dependence

Using matrix B from the previous proof, ~u = B~v holds for a non-pivot column ~u of A
and its corresponding non-pivot column ~v in C = rref(A). Because each nonzero row
of C has a leading one, if a component vi 6= 0, then row i of C has a leading one in
column ji < i. Then col(C, ji) is a column of the identity I and

~v =
∑
vi 6=0

vi col(C, ji).

Multiply the preceding display by B to give

~u = B~v

=
∑
vi 6=0

viB col(C, ji)

=
∑
vi 6=0

vi col(A, ji).

Then ~u is a linear combination of pivot columns of A.



Main Results: Rank-Nullity, Row Rank, Pivot Method

Theorem 3 (Rank-Nullity Equation)
rank(A) + nullity(A) = column dimension of A

Theorem 4 (Row Rank Equals Column Rank)
The number of independent rows of a matrix A equals the number of independent
columns of A. Equivalently, rank(A) = rank(AT).

Theorem 5 (Pivot Method)
Let A be the augmented matrix of ~v1, . . . , ~vk. Let the leading ones in rref(A)
occur in columns i1, . . . , ip. Then a largest independent subset of the k vectors
~v1, . . . , ~vk is the set

~vi1,~vi2, . . . ,~vip.



Proof that rank(A) = rank(AT)

Let S denote the set of all linear combinations of the rows of A. Then S is a subspace,
known as the row space of A. A toolkit sequence from A to rref(A) consists of combi-
nation, swap and multiply operations on the rows of A (replace, swap and scale in David
Lay’s textbook). Therefore, each nonzero row of rref(A) is a linear combination of the
rows of A. Because these rows are independent and span S, then they are a basis for S.
The size of the basis is rank(A).

The pivot theorem applied to AT implies that each vector in S is a linear combination of
the pivot columns of AT . Because the pivot columns of AT are independent and span S,
then they are a basis for S. The size of the basis is rank(AT).

The two competing bases for S have sizes rank(A) and rank(AT), respectively. But
the size of a basis is unique, called the dimension of the subspace S, hence the equality

rank(A) = rank(AT).



Definitions: Kernel, Image, rowspace, colspace
kernel(A) = nullspace(A) = {~x : A~x = ~0}.
Image(A) = colspace(A) = {~y : ~y = A~x for some~x}.
rowspace(A) = colspace(AT) = {~w : ~w = AT~y for some~y}.

How to Compute Nullspace, Rowspace and Colspace

Null Space. Compute rref(A). Write out the general solution ~x to A~x = ~0, where
the free variables are assigned parameter names t1, . . . , tk. Report the basis for
nullspace(A) as the list ∂t1~x, . . . , ∂tk~x.

Column Space. Compute rref(A). Identify the pivot columns i1, . . . , ik. Report the
basis for colspace(A) as the list of columns i1, . . . , ik of A.

Row Space. Compute rref(AT). Identify the pivot columns j1, . . . , j` of AT . Report
the basis for rowspace(A) as the list of rows j1, . . . , j` of A.

Alternatively, compute rref(A), then rowspace(A) has a different basis consisting
of the list of nonzero rows of rref(A).



Dimension, Kernel and Image
Symbol dim(V ) equals the number of elements in a basis for V .

Theorem 6 (Dimension Identities)
(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)

(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

(c) dim(rowspace(A)) = rank(A)

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

(e) dim(kernel(A)) + dim(kernel(AT)) = column dimension of A



Testing Bases for Equivalence

Theorem 7 (Equivalence Test for Bases)
Define augmented matrices

B = aug(~v1, . . . ,~vk), C = aug(~u1, . . . , ~u`), W = aug(B,C).

Then relation k = ` = rank(B) = rank(C) = rank(W ) implies

1. ~v1, . . . , ~vk is an independent set.

2. ~u1, . . . , ~u` is an independent set.

3. span{~v1, . . . ,~vk} = span{~u1, . . . , ~u`}
In particular, colspace(B) = colspace(C) and each set of vectors is an equiv-
alent basis for this vector space.

Proof: Because rank(B) = k, then the first k columns of W are independent. If some column of C is independent of the columns of B, then W would have
k + 1 independent columns, which violates k = rank(W ). Therefore, the columns of C are linear combinations of the columns of B. Then vector space
colspace(C) is a subspace of vector space colspace(B). Because both vector spaces have dimension k, then colspace(B) = colspace(C). The proof
is complete.



Equivalent Bases: Computer Illustration
The following maple code applies the theorem to verify that two bases are equivalent:

1. The basis is determined from the ColumnSpace command in maple.

2. The basis is determined from the pivot columns of A.

In maple, the report of the column space basis is identical to the nonzero rows of
rref(AT).

with(LinearAlgebra):
A:=Matrix([[1,0,3],[3,0,1],[4,0,0]]);
ColumnSpace(A); # Solve Ax=0, basis v1,v2 below
v1:=<2,0,-1>;v2:=<0,2,3>; # fractions removed
ReducedRowEchelonForm(A); # Determine pivot cols=1,3
u1:=Column(A,1); u2:=Column(A,3); # pivot col basis
B:=<v1|v2>; C:=<u1|u2>;
W:=<B|C>;
Rank(B),Rank(C),Rank(W); # Test requires all equal to 2



A False Test for Equivalent Bases
The relation

rref(B) = rref(C)

holds for a substantial number of matrices B and C . However, it does not imply that each
column of C is a linear combination of the columns of B. In particular, it is possible that
colspace(B) 6= colspace(C).

For example, define

B =

 1 0
0 1
1 1

 , C =

 1 1
0 1
1 0

 .

Then

rref(B) = rref(C) =

 1 0
0 1
0 0

 ,

but col(C, 2) is not a linear combination of the columns of B. This means
colspace(B) 6= colspace(C).

Geometrically, the column space of B is the span of two independent vectors, which is a plane in R3. The
column space of C is also a plane, but a different one which intersects the plane for B only along the line L

determined by the two points (0, 0, 0) and (1, 0, 1).


