Geometry of Linear Transformations
$\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right)$ Scaling
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ Projection
$\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ Reflection
$\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ Rotation
$\left(\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right)$ Scaled Rotation In general, $\left(\begin{array}{rr}r \cos \theta & r \sin \theta \\ -r \sin \theta & r \cos \theta\end{array}\right)$
$\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right)$ Vertical Shear Change vertical $y \rightarrow y+k x$, leave x fixed.
$\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right)$ Horizontal Shear Change horizontal $x \rightarrow x+k y$, leave y fixed.

Properties of Geometric Transformations

- The columns of a projection matrix are scalar multiples of a single unit vector $\overrightarrow{\mathbf{u}}$, therefore the columns are either the zero vector or else a vector parallel to $\overrightarrow{\mathbf{u}}$.
- The columns of a reflection matrix are unit vectors that are pairwise orthogonal, that is, their pairwise dot products are zero.
- A shear can be classified as horizontal or vertical by its effect in mapping columns of the identity matrix. A horizontal shear leaves the first column of the identity matrix fixed, whereas a vertical shear leaves the second column of the identity matrix fixed.

