## Strang: Chapter 7

Section 7.1. Exercises 1, 3, 7, 8, 10, 11
Section 7.2. Exercises 1, 2, 5, 10, 14, 20, 21, 26
Section 7.3. Recommended singular value decomposition problems: Exercises 4, 7, 21, 23

## Some Answers

7.1. Exercises 3, 7, 10 have textbook answers.
7.1-1. With $w=0$ linearity gives $T(v+0)=T(v)+T(0)$. Thus $T(0)=0$. With $c=-1$ linearity gives $T(-\overrightarrow{0})=-T(\overrightarrow{0})$. This is a second proof that $T(0)=0$.
7.1-8. (a) The range of $T\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}, 0\right)$ is the line of vectors $(c, 0)$. The nullspace is the line of vectors $(c, c)$.(b) $T\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1}, v_{2}\right)$ has Range $\mathcal{R}^{2}$, kernel $\left\{\left(0,0, v_{3}\right)\right\}$ (c) $T(0)=0$ has Range $\{0\}$, kernel $\mathcal{R}^{2}$ (d) $T\left(v_{1}, v_{2}\right)=\left(v_{1}, v_{1}\right)$ has Range $=$ multiples of $(1,1)$, kernel $=$ multiples of $(1,-1)$.
7.1-11. For multiplication $T(v)=A v: V=\mathcal{R}^{n}, W=\mathcal{R}^{m}$; the outputs fill the column space; $v$ is in the kernel if $A v=0$.
7.2. Exercises 5, 14, 20 have textbook answers.
7.2-1. For $S v=d^{2} v / d x^{2}, v_{1}, v_{2}, v_{3}, v_{4}=1, x, x^{2}, x^{3}, S v_{1}=S v_{2}=0, S v_{3}=2 v_{1}, S v_{4}=6 v_{2}$. The matrix for $S$ is $B=\left(\begin{array}{cccc}0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
7.2-2. $S v=d^{2} v / d x^{2}=0$ for linear functions $v(x)=a+b x$. All $(a, b, 0,0)$ are in the nullspace of the second derivative matrix $B$.
7.2-10. The matrix for $T$ is $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$. For the output $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ choose input $v=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)=$ $A^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. This means: For the output $w_{1}$ choose the input $v_{1}-v_{2}$.
7.2-21. Basis $w$ to basis $v:\left(\begin{array}{rrr}0.0 & 1 & 0 \\ 0.5 & 0 & -0.5 \\ 0.5 & -1 & 0.5\end{array}\right)$. Basis $v$ to basis $w$ : inverse matrix $=\left(\begin{array}{rrr}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1\end{array}\right)$. The key idea: The matrix multiplies the coordinates in the $v$ basis to give the coordinates in the $w$ basis.
7.2-26. Start from $A=L U$. Row 2 of $A$ is $\ell_{21}$ (row 1 of $U$ ) $+\ell_{22}$ (row 2 of $U$ ). The change of basis matrix is always invertible, because basis goes to basis.
7.3: Problems 4, 7, 23 have answers in Strang's book.
7.3-21. Column times row multiplication gives $A=U \Sigma V^{T}=\sum \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$ and also $A^{+}=V \Sigma^{+} U^{T}=$ $\sum\left(1 / \sigma_{i}\right) \vec{v}_{i} \vec{u}_{i}^{T}$. Multiplying $A^{+} A$ and using orthogonality of each $\vec{u}_{i}$ to all other $\vec{u}_{j}$ gives the projection matrix $A^{+} A=\sum(1) \vec{v}_{i} \vec{v}_{i}^{T}$. Similarly $A A^{+}=\sum(1) \vec{u}_{i} \vec{u}_{i}^{T}$ from $V V^{T}=I$.

