Strang: Chapter 7

Section 7.1. Exercises 1, 3, 7, 8, 10, 11

Section 7.2. Exercises 1, 2, 5, 10, 14, 20, 21, 26

Section 7.3. Recommended singular value decomposition problems: Exercises 4, 7, 21, 23

Some Answers

7.1. Exercises 3, 7, 10 have textbook answers.

7.1-1. With w = 0 linearity gives T(v + 0) = T(v) + T(0). Thus T(0) = 0. With c = -1 linearity gives $T(-\vec{0}) = -T(\vec{0})$. This is a second proof that T(0) = 0.

7.1-8. (a) The range of $T(v_1, v_2) = (v_1 - v_2, 0)$ is the line of vectors (c, 0). The nullspace is the line of vectors (c, c). (b) $T(v_1, v_2, v_3) = (v_1, v_2)$ has Range \mathcal{R}^2 , kernel $\{(0, 0, v_3)\}$ (c) T(0) = 0 has Range $\{0\}$, kernel \mathcal{R}^2 (d) $T(v_1, v_2) = (v_1, v_1)$ has Range = multiples of (1, 1), kernel = multiples of (1, -1).

7.1-11. For multiplication T(v) = Av: $V = \mathcal{R}^n$, $W = \mathcal{R}^m$; the outputs fill the column space; v is in the kernel if Av = 0.

7.2. Exercises 5, 14, 20 have textbook answers.

7.2-1. For $Sv = d^2v/dx^2$, $v_1, v_2, v_3, v_4 = 1, x, x^2, x^3$, $Sv_1 = Sv_2 = 0$, $Sv_3 = 2v_1$, $Sv_4 = 6v_2$. The matrix for S is $B = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

7.2-2. $Sv = d^2v/dx^2 = 0$ for linear functions v(x) = a + bx. All (a, b, 0, 0) are in the nullspace of the second derivative matrix B.

7.2-10. The matrix for T is $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. For the output $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ choose input $v = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $A^{-1}\begin{pmatrix} 1\\0\\0 \end{pmatrix}$. This means: For the output w_1 choose the input $v_1 - v_2$.

7.2-21. Basis *w* to basis *v*: $\begin{pmatrix} 0.0 & 1 & 0 \\ 0.5 & 0 & -0.5 \\ 0.5 & -1 & 0.5 \end{pmatrix}$. Basis *v* to basis *w*: inverse matrix = $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}$. The

key idea: The matrix multiplies the coordinates in the v basis to give the coordinates in the w basis.

7.2-26. Start from A = LU. Row 2 of A is ℓ_{21} (row 1 of U)+ ℓ_{22} (row 2 of U). The change of basis matrix is always invertible, because basis goes to basis.

7.3: Problems 4, 7, 23 have answers in Strang's book.

7.3-21. Column times row multiplication gives $A = U\Sigma V^T = \sum \sigma_i \vec{u}_i \vec{v}_i^T$ and also $A^+ = V\Sigma^+ U^T = \sum (1/\sigma_i) \vec{v}_i \vec{u}_i^T$. Multiplying A^+A and using orthogonality of each \vec{u}_i to all other \vec{u}_j gives the projection matrix $A^+A = \sum (1) \vec{v}_i \vec{v}_i^T$. Similarly $AA^+ = \sum (1) \vec{u}_i \vec{u}_i^T$ from $VV^T = I$.