Strang: Chapter 5

Section 5.1. Exercises $1,3,8,14,21,27,33$
Section 5.2. Exercises 2, 5, 7, 11, 12, 16, 20, 23, 32
5.2-2: Use exercise 1 in part (a). 5.2-12: Find the cofactor matrix for A. Then compare the inverse of A with $A C^{T}$.

Problem week10-1. The first three Legendre polynomials are $1, x$, and $x^{2}-1$. Choose c so that the fourth polynomial $x^{3}-c x$ is orthogonal to the first three. All integrals go from -1 to 1 . See Exercise 8.5-4.

Problem week10-2. Graph the square wave. Then graph by hand the sum of two sine terms in its series, or graph by machine the sum of 2,3 , and 10 terms. The famous Gibbs phenomenon is the oscillation that overshoots the jump (this doesn't die down with more terms). See Exercise 8.5-7.

Section 5.3. Exercises 2, 4, 6, 9, 17, 28, 33, 36

Some Answers

5.1. Exercises $1,8,14,21,27$ have textbook answers.
5.1-3. (a) False: $\operatorname{det}(I+I)$ is not $1+1$ (b) True: The product rule extends to $A B C$ (use it twice) (c) False: $\operatorname{det}(4 A)$ is $4^{n} \operatorname{det}(A)(\mathrm{d})$ False: $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), A B-B A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is invertible.
5.1-33. I now know that maximizing the determinant for $1,-1$ matrices is Hadamard's problem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil Sloane's wonderful On-Line Encyclopedia of Integer Sequences (research. att.com/ ${ }^{\sim} \mathrm{njas}$) includes the solution for small n (and more references) when the problem is changed to 0,1 matrices. That sequence A003432 starts from $n=0$ with $1,1,1,2,3,5,9$. Then the $1,-1$ maximum for size n is 2^{n-1} times the 0,1 maximum for size $n-1$ (so (32)(5) $=160$ for $n=6$ in sequence A003433). To reduce the $1,-1$ problem from 6 by 6 to the 0,1 problem for 5 by 5 , multiply the six rows by ± 1 to put +1 in column 1. Then subtract row 1 from rows 2 to 6 to get a 5 by 5 submatrix S of -2 , 0 and divide S by -2 . Here is an advanced MATLAB code and a $1,-1$ matrix with largest $\operatorname{det}(A)=48$ for $n=5$:

```
    n=5; p=(n-1)^2; A0=ones(n); maxdet=0;
for k=0 : 2^p - 1
    Asub=rem(floor(k. * 2.^(-p + 1: 0)),2);
    A=A0;
    A(2:n, 2:n)= 1-2*reshape(Asub,n-1,n-1);
    if abs(det(A))>maxdet, maxdet=abs(det(A)); maxA=A;
    end
end
```

$$
\text { Output: } \quad \max A=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 \\
1 & -1 & 1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1
\end{array}\right], \quad \max d e t=48
$$

5.2. Exercises $2,11,12,16,20,32$ have textbook answers.
5.2-5. Four zeros in the same row guarantee det $=0$. $A=I$ has 12 zeros (maximum with det $\neq 0$).
5.2-7. $5!/ 2=60$ permutation matrices have det $=+1$. Move row 5 of I to the top; starting from rows in the order $(5,1,2,3,4)$, elimination to reach I will take four row exchanges.

5.2-23.

(a) If we choose an entry from B we must choose an entry from the zero block; result zero. This leaves entries from A times entries from D leading to $\operatorname{det}(A) \operatorname{det}(D)$.
(b) and (c) Take $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), D=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. See the solution to problem 25.

Problem week10-1. Answer: $c=3 / 5$. Use \int_{-T}^{T} (odd function) $d x=0$ in the report.
Problem week10-2. The $-1,1$ odd square wave is $f(x)=x /|x|$ for $0<|x|<\pi$. Its Fourier series in equation (8), Section 8.5 of Strang's book, is $4 / 1$ times $\left[\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x \cdots\right]$. The sum of the first N terms has an interesting shape, close to the square wave except where the wave jumps between -1 and 1 . At those jumps, the Fourier sum spikes the wrong way to ± 1.09 (the Gibbs phenomenon) before it takes the jump with the true values of $f(x)$.
This happens for the Fourier sums of all functions with jumps. It makes shock waves hard to compute. You can see it clearly in a graph of the sum of 10 terms.
5.3. Exercises $2,4,6,9,17,36$ have textbook answers.
5.3-28. Let $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$ and $\vec{u}=(x, y, z)$. Then

$$
J=\operatorname{det}\left[\vec{u}_{\rho}\left|\vec{u}_{\phi}\right| \vec{u}_{\theta}\right]=\left(\begin{array}{rrr}
\sin \phi \cos \theta & \rho \cos \phi \sin \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right)
$$

Expand by cofactors along column 1 , then simplify with trig identities, obtaining the answer $=\rho^{2} \sin \phi$.
5.3-33. Find the components of $\vec{v} \times \vec{w}$ from determinant expansion $\operatorname{det}\left(\begin{array}{rrr}\vec{\imath} & \vec{\jmath} & \vec{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right)$. These are exactly the cofactors along row one of the determinant $\operatorname{det}\left(\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right)$. Then the determinant equals its cofactor expansion $=$ dot product of \vec{u} and $\vec{v} \times \vec{w}$.

