
Strang: Chapter 4

Section 4.1. Exercises 5, 9, 11, 12, 16, 17, 19, 20, 21, 26

Section 4.2. Exercises 1, 2, 3, 11, 12, 17, 21, 27, 31

Section 4.3. Exercises 1, 6, 12, 17, 18, 21

Problem week9-1. Define a function T from Rn to Rm by the matrix multiply formula T (~x) = A~x. Prove
that for all vectors ~u,~v and all constants c, (a) T (~u+ ~v) = T (~u) + T (~v), (b) T (c~u) = cT (~u). Definition:

T is called a linear transformation if T maps Rn into Rm and satisfies (a) and (b).

Problem week9-2. Let T be a linear transformation from Rn into Rn that satisfies ‖T (~x)‖ = ‖~x‖ for all ~x.
Prove that the n× n matrix A of T is orthogonal, that is, ATA = I, which means the columns of A are
orthonormal:

col(A, i) · col(A, j) = 0 for i 6= j, and col(A, i) · col(A, i) = 1.

Problem week9-3. Let T be a linear transformation given by n×n orthogonal matrix A. Then ‖T (~x)‖ = ‖~x‖
holds. Construct an example of such a matrix A for dimension n = 3, which corresponds to holding the
z-axis fixed and rotating the xy-plane 45 degrees counter-clockwise. Draw a 3D-figure which shows the
action of T on the unit cube S = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

Section 4.4. Exercises 3, 6, 10, 13, 15, 18, 30, 32
4.4-18: It helps to find explicitly Q and R, which can be quickly checked in Maple.

Some Answers

4.1. Exercises 9, 12, 16, 21 have textbook answers.

4.1-5. The problem is about the equation nullspace = rowspace⊥, valid for both matrix A and AT . The
Fundamental Theorem of Linear Algebra, Part II, can be summarized as the text

The nullspace is perpendicular to the rowspace.

The text is justified from equality of vectors: Ax = 0 is equivalent to scalar equations row(A, 1) · x =
0, . . . , row(A,m) · x = 0, which says that x is perpendicular to all rows of A, hence perpendicular to the
rowspace of A.

(a) Apply the equation toAT . Then nullspace(AT )⊥ rowspace(AT ), equivalent to nullspace(AT )⊥ colspace(A),
implies any solution y to AT y = 0 is perpendicular to any Ax. Since b = Ax, then y ⊥ b or yT b = 0.
(b) If AT y = (1, 1, 1) has a solution, then y is in rowspace(A). Then nullspace(A) ⊥ rowspace(A) implies
y · x = 0 for all x in the nullspace of A.

4.1-9. Answers: colspace, perpendicular. See problem 4.1-5 above for nullspace ⊥ rowspace, applied here for
matrix AT .
Prove ATAx = 0 implies Ax = 0.
Because y = Ax is a linear combination of the columns of A, then y is in colspace(A) = rowspace(AT ). If
ATAx = 0, then AT y = 0, which implies y is in nullspace(AT ). Use nullspace(AT ) ⊥ rowspace(AT ). Then
nullspace(A) and rowspace(AT ) meet only in the vector y = 0, which says y = Ax = 0.
Prove Ax = 0 implies ATAx = 0.
First, assume Ax = 0. Multiply by AT to get ATAx = AT 0. The right side is the zero vector, which gives
ATAx = 0.
See also problem 4.2-27, which repeats this same argument.



4.1-11.

For A: The nullspace is spanned by (−2, 1), the row space is spanned by (1, 2). The column space is the line
through (1, 3) and N(AT ) is the line through (3,−1). In each case,

For B: The nullspace of B is is a line spanned by (0, 1), the row space is a line spanned by (1, 0). The column
space and left nullspace are the same as for A. As in (a), the line pairs are perpendicular.

4.1-17. If S is the subspace of R3 containing only the zero vector, then S⊥ is R3. If S is spanned by (1, 1, 1),
then S⊥ is the plane spanned by any two independent vectors perpendicular to (1, 1, 1). For example, the
vectors (1,−1, 0) and (1, 0,−1). If S is spanned by (2, 0, 0) and (0, 0, 3), then S⊥ is the line spanned by
(0, 1, 0), computed as the cross product of the two vectors, then scaled to be a unit vector.

4.1-26. A =

 2 2 −1
−1 2 2

2 −1 2


This example shows a matrix with perpendicular columns. Then ATA = 9I is diagonal: (ATA)ij = (column
i of A) · (column j of A). When the columns are unit vectors, then ATA = I.

4.2. Exercises 1, 3, 11, 21, 31 have textbook answers.

4.2-2.

(a) The projection of b = (cos θ, sin θ) onto a = (1, 0) is p = (cos θ, 0).

(b) The projection of b = (1, 1) onto a = (1,−1) is p = (0, 0) since aT b = 0.

4.2-12. P1 =

 1 0 0
0 1 0
0 0 0

 = projection matrix onto the column space of A (the xy plane)

P2 =

 0.5 0.5 0
0.5 0.5 0
0.0 0.0 1

 = Projection matrix onto the second column space. Certainly (P2)
2 = P2.

4.2-17. If P 2 = P then (I −P )2 = (I −P )(I −P ) = I2−PI − IP +P 2 = I −P . When P projects onto the
column space, then I − P projects onto the left nullspace.

4.2-27. If ATAx = 0 then Ax is a vector in the nullspace of AT . But Ax is a vector in the column space of
A. To be in both of those perpendicular spaces, Ax must be zero. So A and ATA have the same nullspace.

4.3. Exercises 1, 18, 21 have textbook answers.

4.3-6. a = (1, 1, 1, 1) and b = (0, 8, 8, 20) give x̂ =
aT b

aTa
= 9 and the projection is x̂a = p = (9, 9, 9, 9). Then

eTa = (−9,−1,−1, 11)T (1, 1, 1, 1) = 0 and ‖e‖ =
√

204.

4.3-12.

(a) a = (1, . . . , 1) has aTa = m, aT b = b1 + · · ·+ bm. Therefore x̂ = aT b/m is the mean of the b’s

(b) e = b− x̂a, b = (1, 2, b), ‖e‖ =
∑m

i=1(b1 − x̂)2 = variance

(c) p = (3, 3, 3), e = (−2,−1, 3), pT e = 0. P = 1
3

 1 1 1
1 1 1
1 1 1

.

4.3-17.

 1 −1
1 1
1 2

( C
D

)
=

 7
7

21

. The solution ~x =

(
9
4

)
comes from

(
3 2
2 6

)(
C
D

)
=

(
35
42

)
.



Problem week9-1. Write out both sides of identities (a) and (b), replacing T (~w) by matrix product A~w for
various choices of ~w. Then compare sides to finish the proof.

Problem week9-2. Equation ‖T (~x)‖ = ‖~x‖ means lengths are preserved by T . It also means ‖A~x‖ = ‖~x‖,
which applied to ~x = col(I, k) means col(A, k) has length equal to col(I, k) (=1). Write ‖~w‖2 = ~w · ~w = ~wT ~w
(the latter a matrix product). Then write out the equation ‖A~x‖2 = ‖~x‖2, to see what you get, for various
choices of unit vectors ~x.

Problem week9-3. The equations for such a transformation can be written as plane rotation equations in
x, y plus the identity in z. They might look like x′ = x cos θ− y sin θ, y′ = similar, z′ = z. Choose θ then test
it by seeing what happens to x = 1, y = 0, z = 0, the answer for which is a rotation of vector (1, 0, 0). The
answer for A is obtained by writing the scalar equations as a matrix equation (x′, y′, z′)T = A(x, y, z)T .

4.4. Exercises 3, 6, 13, 15, 18, 30, 32 have textbook answers.

4.4-10. (a) If q1, q2, q3 are orthonormal then the dot product of q1 with c1q1 + c2q2 + c3q3 = 0 gives c1 = 0.
Similarly c2 = c3 = 0. Independent q’s. (b) Qx = 0 implies x = 0 implies x = 0.


