Quiz 6, Problem 1. Vertical Motion Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted to an earthquake. It started a clock, and then it started motion of a recording surface, which ran at a speed of 1 cm per second for 20 seconds. The clock provided the observer with the earthquake hit time.

A Simplistic Vertical Motion Seismoscope

The apparently stationary heavy mass on a spring writes with the attached stylus onto a rotating drum, as the ground moves up. The generated trace is $x(t)$.

The motion of the heavy mass m in the figure can be modeled initially by a forced spring-mass system with damping. The initial model has the form

$$
m x^{\prime \prime}+c x^{\prime}+k x=f(t)
$$

where $f(t)$ is the vertical ground force due to the earthquake. In terms of the vertical ground motion $u(t)$, we write via Newton's second law the force equation $f(t)=-m u^{\prime \prime}(t)$ (compare to falling body $-m g$). The final model for the motion of the mass is then

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+2 \beta \Omega_{0} x^{\prime}(t)+\Omega_{0}^{2} x(t)=-u^{\prime \prime}(t) \tag{1}\\
\frac{c}{m}=2 \beta \Omega_{0}, \quad \frac{k}{m}=\Omega_{0}^{2} \\
x(t)=\text { center of mass position measured from equilibrium } \\
u(t)=\text { vertical ground motion due to the earthquake. }
\end{array}\right.
$$

Terms seismoscope, seismograph, seismometer refer to the device in the figure. Some observations:

Slow ground movement means $x^{\prime} \approx 0$ and $x^{\prime \prime} \approx 0$, then (1) implies $\Omega_{0}^{2} x(t)=-u^{\prime \prime}(t)$. The seismometer records ground acceleration.

Fast ground movement means $x \approx 0$ and $x^{\prime} \approx 0$, then (1) implies $x^{\prime \prime}(t)=-u^{\prime \prime}(t)$. The seismometer records ground displacement.

A release test begins by starting a vibration with u identically zero. Two successive maxima $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right)$ are recorded. This experiment determines constants β, Ω_{0}.

The objective of (1) is to determine $u(t)$, by knowing $x(t)$ from the seismograph.

The Problem.

Assume the seismograph trace can be modeled at time $t=0$ (a time after the earthquake struck) by $x(t)=10 \cos (3 t)$. Assume a release test determined $2 \beta \Omega_{0}=16$ and $\Omega_{0}^{2}=80$. Explain how to find a formula for the ground motion $u(t)$, then provide details for the answer $u(t)=\frac{710}{9} \cos (3 t)-\frac{160}{3} \sin (3 t)$ (assume integration constants are zero).

Quiz6 Problem 2. Resistive Network with 2 Loops and DC Sources.

The Branch Current Method can be used to find a 3×3 linear system for the branch currents I_{1}, I_{2}, I_{3}.

$$
\begin{array}{rlrlr}
I_{1}-I_{2}-I_{3} & =0 & & \text { KCL, upper node } \\
3 I_{1}+2 I_{2} & & =18 & & \text { KVL, left loop } \\
2 I_{2}-2 I_{3} & =5 & & \text { KVL, right loop }
\end{array}
$$

Symbol KCL means Kirchhoff's Current Law, which says the algebraic sum of the currents at a node is zero. Symbol KVL means Kirchhoff's Voltage Law, which says the algebraic sum of the voltage drops around a closed loop is zero.
(a) Solve the equations to find the currents I_{1}, I_{2}, I_{3} in the figure.
(b) Compute the voltage drops across resistors R_{1}, R_{2}, R_{3}. Answer: $\frac{93}{8}, \frac{51}{8}, \frac{11}{8}$ volts.
(c) Replace the 5 volt battery by a 4 volt battery. Solve the system again, and report the new currents and voltage drops.
References. Edwards-Penney 3.7, electric circuits. All About Circuits Volume I - DC, by T. Kuphaldt:
http://www.allaboutcircuits.com/.
Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2015/2280/electricalCircuits.pdf.
Solved examples of electrical networks can be found in the lecture notes of Ruye Wang:
http://fourier.eng.hmc.edu/e84/lectures/ch2/node2.html.

The Problem. Suppose $E=\sin (40 t), L=1 \mathrm{H}, R=50 \Omega$ and $C=0.01 \mathrm{~F}$. The model for the charge $Q(t)$ is $L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)$.
(a) Differentiate the charge model and substitute $I=\frac{d Q}{d t}$ to obtain the current model $I^{\prime \prime}+50 I^{\prime}+100 I=40 \cos (40 t)$.
(b) Find the reactance $S=\omega L-\frac{1}{\omega C}$, where $\omega=40$ is the input frequency, the natural frequency of $E=\sin (40 t)$ and $E^{\prime}=40 \cos (40 t)$. Then find the impedance $Z=$ $\sqrt{S^{2}+R^{2}}$.
(c) The steady-state current is $I(t)=A \cos (40 t)+B \sin (40 t)$ for some constants A, B. Substitute $I=A \cos (40 t)+B \sin (40 t)$ into the current model (a) and solve for A, B. Answers: $A=-\frac{6}{625}, B=\frac{8}{625}$.
(d) Write the answer in (c) in phase-amplitude form $I=I_{0} \sin (40 t-\delta)$ with $I_{0}>0$ and $\delta \geq 0$. Then compute the time lag δ / ω.
Answers: $I_{0}=0.016, \delta=\arctan (0.75), \delta / \omega=0.0160875$.

References

Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2015/2280/electricalCircuits.pdf.
Edwards-Penney Differential Equations and Boundary Value Problems, sections 3.4, 3.5, 3.6, 3.7.

