Differential Equations 2280 Final Exam

Thursday, 28 April 2017, 12:45pm-3:15pm

Instructions: This in-class exam is 120 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

Chapters 1 and 2: Linear First Order Differential Equations

(a) $[60 \%]$ Solve $5 v^{\prime}(t)=7+\frac{4}{t+1} v(t), v(0)=7$. Show all integrating factor steps.
(b) $[20 \%]$ Solve the linear homogeneous equation $2 \sqrt{x+2} \frac{d y}{d x}=2 x y$.
(c) [20\%] The linear problem $2 \sqrt{x+2} y^{\prime}=2 x y-3 x$ can be solved using superposition $y=y_{h}+y_{p}$. Find y_{h} and y_{p}.

Chapter 3: Linear Equations of Higher Order

(a) $[10 \%]$ Solve for the general solution: $y^{\prime \prime}-4 y^{\prime}+20 y=0$
(b) $[20 \%]$ Solve for the general solution: $y^{(5)}+289 y^{(3)}=0$
(c) $[20 \%]$ Solve for the general solution, given the characteristic equation is $r\left(r^{3}-4 r\right)^{2}\left(r^{2}-4 r+20\right)^{2}=0$.
(d) [20\%] Given $\frac{1}{2} x^{\prime \prime}(t)+\frac{2}{5} x^{\prime}(t)+\frac{2}{3} x(t)=17 \cos (\omega t)$, which represents a damped forced spring-mass system with $m=\frac{1}{2}, c=\frac{2}{5}, k=\frac{2}{3}$, answer the following questions.
(a) Compute the frequency ω for practical mechanical resonance.
(b) Classify the homogeneous problem as over-damped, critically-damped or underdamped.
(e) $[30 \%]$ Determine for $y^{(6)}-4 y^{(4)}=5 x^{3}+x^{2} e^{2 x}+\sin (2 x)$ the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Chapters 4 and 5: Systems of Differential Equations

(a) $[10 \%]$ Matrix $A=\left(\begin{array}{rrr}0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & -5\end{array}\right)$ has eigenvalues $-1,1,-5$. Find all eigenpairs of
A and then write the solution of $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ according to the Eigenanalysis Method.
(b) [30\%] Find the general solution of the 2×2 system

$$
\frac{d}{d t}\binom{x(t)}{y(t)}=\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\binom{x(t)}{y(t)}
$$

according to the Cayley-Hamilton-Ziebur Method, using the textbook's Chapter 4 shortcut.
(c) [10\%] Assume a 2×2 system $\frac{d}{d t} \vec{u}=A \vec{u}$ has a scalar general solution

$$
x(t)=c_{1} e^{3 t}+c_{2} e^{4 t}, \quad y(t)=2 c_{2} e^{3 t}+\left(c_{1}+3 c_{2}\right) e^{4 t}
$$

Compute the exponential matrix $e^{A t}$.
(d) [20\%] Consider the scalar system

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=3 x, \\
z^{\prime}=x+y
\end{array}\right.
$$

Solve the system by the most efficient method.

Chapter 6: Dynamical Systems

(a) $[10 \%]$ The origin is an equilibrium point of the linear system $\mathbf{u}^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) \mathbf{u}$. Classify $(0,0)$ as center, spiral, node, saddle.

In parts (b), (c), (d), consider the nonlinear dynamical system

$$
\begin{equation*}
x^{\prime}=14 x-2 x^{2}-x y, \quad y^{\prime}=16 y-2 y^{2}-x y . \tag{1}
\end{equation*}
$$

(b) $[20 \%]$ Find the equilibrium points for the nonlinear system (??).
(c) [30\%] Consider again system (??). Classify the linearization at equilibrium point $(4,6)$ as a node, spiral, center, saddle.
(d) $[30 \%]$ Consider again system (??). What classification can be deduced for equilibrium $(4,6)$ of this nonlinear system, according to the Pasting Theorem?

Chapter 7: Laplace Theory

(a) $[10 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{1}{s(s+1)^{2}}$.
(b) $[10 \%]$ Find $\mathcal{L}(f)$ given $f(t)=(-t) \sinh (3 t)$. This is the hyperbolic sine.
(c) [30\%] Solve by Laplace's Method the forced linear dynamical system

$$
\left\{\begin{array}{l}
x^{\prime}=x-y+2 \\
y^{\prime}=x+y+1,
\end{array}\right.
$$

subject to initial states $x(0)=0, y(0)=0$.
(d) $[20 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s}{s^{2}+2 s+17}$.
(e) $[10 \%]$ Solve for $f(t)$ in the relation

$$
\mathcal{L}(f)=\left.\left(\mathcal{L}\left(t^{2} e^{4 t} \cos t\right)\right)\right|_{s \rightarrow s+2}
$$

Chapter 9: Fourier Series and Partial Differential Equations

In parts (a) and (b), let $f_{0}(x)=1$ on the interval $-1<x<0, f_{0}(x)=-1$ on the interval $0<x<1, f_{0}(x)=0$ for $x=0$ and $x= \pm 1$. Let $f(x)$ be the periodic extension of f_{0} to the whole real line, of period 2.
(a) $[10 \%]$ Compute the Fourier coefficients of $f(x)$ on $[-1,1]$.
(b) [10\%] Find all values of x in $|x|<3$ which will exhibit Gibb's over-shoot.
(d) [40\%] Heat Conduction in a Rod. Solve the rod problem on $0 \leq x \leq L, t \geq 0$:

$$
\begin{cases}u_{t} & =u_{x x}, \\ u(0, t) & =0 \\ u(L, t) & =0 \\ u(x, 0) & =5 \sin (2 \pi x / L)+12 \sin (4 \pi x / L)\end{cases}
$$

(e) $[30 \%]$ Vibration of a Finite String. The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ on $0<x<L, t>0$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution $u(x, t)$ equal to an infinite series of constants times normal modes (the superposition of the normal modes).
Solve the finite string vibration problem on $0 \leq x \leq 5, t>0$:

$$
\begin{cases}u_{t t}(x, t) & =25 u_{x x}(x, t) \\ u(0, t) & =0 \\ u(5, t) & =0 \\ u(x, 0) & =\sin (5 \pi x)+2 \sin (7 \pi x) \\ u_{t}(x, 0) & =0\end{cases}
$$

