Differential Equations 2280
 Midterm Exam 3
 Exam Date: 13 April 2018 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

Chapter 3 - Nth Order Differential Equations

Problem (1a) [40\%] Find the Beats solution for a forced undamped spring-mass problem

$$
x^{\prime \prime}+\sigma^{2} x=F_{0} \cos (\omega t), \quad x(0)=x^{\prime}(0)=0
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert your answer.

Problem (1b) [30\%] Let $f(x)$ be a given linear combination of Euler solution atoms. Find the characteristic equation of a linear homogeneous scalar differential equation of least order such that $y=f(x)$ is a solution. Kindly leave the characteristic equation in factored form, unexpanded.

Problem (1c) [40\%] Consider a forced mechanical oscillation equation and/or a forced electrical current equation. Determine the practical resonance frequency ω for each equation. Determine a particular solution by the method of undetermined coefficients. Find the amplitude of this particular solution.

Chapters 4 and 5 - Systems of Differential Equations

Theorem. (Eigenanalysis Method) If A is a real 3×3 matrix with eigenpairs $\left(\lambda_{1}, \vec{v}_{1}\right),\left(\lambda_{2}, \vec{v}_{2}\right),\left(\lambda_{3}, \vec{v}_{3}\right)$, then the system $\vec{x}^{\prime}=A \vec{x}$ has general solution

$$
\vec{x}(t)=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}+c_{3} \vec{v}_{3} e^{\lambda_{3} t} .
$$

Theorem. (Cayley-Hamilton-Ziebur). The components of solution \vec{x} of $\vec{x}^{\prime}(t)=$ $A \vec{x}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A-\lambda I|=0$.
Definition. Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\vec{x}^{\prime}(t)=A \vec{x}(t)$ is called a fundamental matrix. It is known that the general solution is $\vec{x}(t)=\Phi(t) \vec{c}$, where \vec{c} is a column vector of arbitrary constants c_{1}, \ldots, c_{n}. An alternate and widely used definition of fundamental matrix is $\Phi^{\prime}(t)=A \Phi(t),|\Phi(0)| \neq 0$.

Chapters 4 and 5 - Systems of Differential Equations

Problem (2a) [30\%] Assume given a specific 3×3 matrix A with given eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Apply the Cayley-Hamilton-Ziebur theorem to this example.

Problem (2b) [40\%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$ where the 4×4 matrix and vector \vec{x} are defined by

$$
A=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right), \quad \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) .
$$

Use an appropriate method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.
Problem (2c) [40\%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$ where the 4×4 matrix and vector \vec{x} are defined by

$$
A=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right), \quad \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right), \quad \vec{x}(0)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Apply Laplace's method to obtain a 4×4 system for $\mathcal{L}\left(x_{1}\right), \mathcal{L}\left(x_{2}\right), \mathcal{L}\left(x_{3}\right), \mathcal{L}\left(x_{4}\right)$. Your solution can use scalar equations or the vector-matrix equation $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$. Other parts of this problem: Solve the system using Cramer's Rule. Solve for \vec{x} using Laplace tables and Lerch's theorem.

Problem (2d) [30\%] The Cayley-Hamilton-Ziebur shortcut is to be applied to a system

$$
x^{\prime}=a x+b y, \quad y^{\prime}=c x+d y
$$

where a, b, c, d are given along with the eigenvalues λ_{1}, λ_{2}.
Part 1. Show the details of the method, finally displaying formulas for $x(t), y(t)$.
Part 2. Report a fundamental matrix $\Phi(t)$.
Part 3. Use Part 2 to find the exponential matrix $e^{A t}$.

Chapter 6, Linear and Nonlinear Dynamical Systems

Problem (3a) [20\%] Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$
\frac{d}{d t} \vec{u}=\left(\begin{array}{cc}
* & * \\
& *
\end{array}\right) \vec{u}
$$

Problem (3b) [30\%] Consider the nonlinear dynamical system

$$
\begin{aligned}
& x^{\prime}=*, \\
& y^{\prime}=* .
\end{aligned}
$$

An equilibrium point is $x=*, y=*$. Compute the Jacobian matrix of the linearized system at this equilibrium point.

Problem (3c) [30\%] Consider the nonlinear system $\left\{\begin{array}{l}x^{\prime}=*, \\ y^{\prime}=*\end{array}\right.$
(Part 1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$, where A is the Jacobian matrix of this system at $x=*, y=*$.
(Part 2) Apply the Pasting Theorem to classify $x=2, y=0$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75%.

Problem (3d) [20\%] State the hypotheses and the conclusions of the Pasting Theorem used in problem (3c) above. Accuracy and completeness expected.

