Differential Equations 2280 Midterm Exam 3 Exam Date: 13 April 2018 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

Chapter 3 – Nth Order Differential Equations

Problem (1a) [40%] Find the **Beats** solution for a forced undamped spring-mass problem

 $x'' + \sigma^2 x = F_0 \cos(\omega t), \quad x(0) = x'(0) = 0.$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert your answer.

Problem (1b) [30%] Let f(x) be a given linear combination of Euler solution atoms. Find the characteristic equation of a linear homogeneous scalar differential equation of least order such that y = f(x) is a solution. Kindly leave the characteristic equation in factored form, unexpanded.

Problem (1c) [40%] Consider a forced mechanical oscillation equation and/or a forced electrical current equation. Determine the practical resonance frequency ω for each equation. Determine a particular solution by the method of undetermined coefficients. Find the amplitude of this particular solution.

Chapters 4 and 5 – Systems of Differential Equations

Theorem. (Eigenanalysis Method) If A is a real 3×3 matrix with eigenpairs $(\lambda_1, \vec{v_1}), (\lambda_2, \vec{v_2}), (\lambda_3, \vec{v_3})$, then the system $\vec{x}' = A\vec{x}$ has general solution

$$\vec{x}(t) = c_1 \vec{v}_1 e^{\lambda_1 t} + c_2 \vec{v}_2 e^{\lambda_2 t} + c_3 \vec{v}_3 e^{\lambda_3 t}.$$

Theorem. (Cayley-Hamilton-Ziebur). The components of solution \vec{x} of $\vec{x}'(t) = A\vec{x}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A - \lambda I| = 0$.

Definition. Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\vec{x}'(t) = A\vec{x}(t)$ is called a **fundamental matrix**. It is known that the general solution is $\vec{x}(t) = \Phi(t)\vec{c}$, where \vec{c} is a column vector of arbitrary constants c_1, \ldots, c_n . An alternate and widely used definition of fundamental matrix is $\Phi'(t) = A\Phi(t)$, $|\Phi(0)| \neq 0$.

Chapters 4 and 5 – Systems of Differential Equations

Problem (2a) [30%] Assume given a specific 3×3 matrix A with given eigenvalues $\lambda_1, \lambda_2, \lambda_3$. Apply the Cayley-Hamilton-Ziebur theorem to this example.

Problem (2b) [40%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$ where the 4 × 4 matrix and vector \vec{x} are defined by

Use an appropriate method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$.

Problem (2c) [40%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$ where the 4 × 4 matrix and vector \vec{x} are defined by

Apply Laplace's method to obtain a 4×4 system for $\mathcal{L}(x_1), \mathcal{L}(x_2), \mathcal{L}(x_3), \mathcal{L}(x_4)$. Your solution can use scalar equations or the vector-matrix equation $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$. Other parts of this problem: Solve the system using Cramer's Rule. Solve for \vec{x} using Laplace tables and Lerch's theorem.

Problem (2d) [30%] The Cayley-Hamilton-Ziebur shortcut is to be applied to a system

$$x' = ax + by, \quad y' = cx + dy,$$

where a, b, c, d are given along with the eigenvalues λ_1, λ_2 .

Part 1. Show the details of the method, finally displaying formulas for x(t), y(t).

Part 2. Report a fundamental matrix $\Phi(t)$.

Part 3. Use **Part 2** to find the exponential matrix e^{At} .

Chapter 6, Linear and Nonlinear Dynamical Systems

Problem (3a) [20%] Determine whether the unique equilibrium $\vec{u} = \vec{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u} = \vec{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$\frac{d}{dt}\vec{u} = \left(\begin{array}{cc} * & * \\ & * \end{array}\right)\vec{u}$$

Problem (3b) [30%] Consider the nonlinear dynamical system

$$\begin{array}{rcl}
x' &=& *, \\
y' &=& *.
\end{array}$$

An equilibrium point is x = *, y = *. Compute the Jacobian matrix of the linearized system at this equilibrium point.

Problem (3c) [30%] Consider the nonlinear system $\begin{cases} x' = *, \\ y' = *. \end{cases}$

(Part 1) Determine the stability at $t = \infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u} = \vec{0}$ for the linear dynamical system $\frac{d}{dt}\vec{u} = A\vec{u}$, where A is the Jacobian matrix of this system at x = *, y = *.

(Part 2) Apply the Pasting Theorem to classify x = 2, y = 0 as a saddle, center, spiral or node for the **nonlinear dynamical system**. Discuss all details of the application of the theorem. *Details count* 75%.

Problem (3d) [20%] State the hypotheses and the conclusions of the *Pasting Theorem* used in problem (3c) above. Accuracy and completeness expected.