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Math 2250 Maple Lab 5

Brine Tanks. Glucose-Insulin Model.
S2018

Maple Project 5 has four problems L5-1, L5-2, L5-3, L5-4.

Submitted work. Please submit one stapled package. Some handwritten work is expected, which should display the
steps shown in examples below. Maple code is expected to parallel the code given in the examples below. The final
pages are appendices made by printing one or more maple work sheets.

References: Code in maple appears in 2250mapleL5-brineTank-S2018.txt at URL
http://www.math.utah.edu/~gustafso/S2018/. This document: 2250mapleL5-brineTank-S2018.pdf.

Linear Cascade

Cascading brine tanks are modeled by a triangular system of differential equations. We will consider the three-tank
model,

x′1(t) = −0.5x1(t),
x′2(t) = 0.5x1(t) − 0.25x2(t),
x′3(t) = 0.25x2(t) − 0.2x3(t),

(1)

with initial conditions
x1(0) = 15, x2(0) = 0, x3(0) = 0.

Glucose-Insulin Simplified Model

Let G(t) be the excess glucose concentration in a person’s blood at time t, and let H(t) be the excess insulin concentration
in the blood at time t. Concentration units are milligrams per deciliter (mg/dl). We consider the example

G′(t) = −0.1G(t) − 0.4H(t),
H ′(t) = 0.1G(t) − 0.1H(t),

(2)

with initial data
G(0) = 100, H(0) = 0.

Overview: Cells rely on glucose as their main energy supply. Glucose is a by-product of the food we eat. After
digestion of the food, glucose is secreted into the bloodstream for transport to the cells. Simple, but glucose cannot
enter the cells directly, because cells require insulin from the pancreas for cell uptake. The amount of insulin secreted
by the pancreas is regulated by a feedback loop that measures the current blood glucose level. There is a normal ideal
steady-state glucose concentration (70-120 mg/dl) in the blood maintained by the feedback loop. Too low (glucose less
than 40 mg/dl) is the disease hypoglycemia and too high (glucose greater than 210 mg/dl) is the disease hyperglycemia
[diabetes]. If glucose is at steady-state (homeostatic), then the pancreas secretion rate is about 500 mg/min, in order
to maintain homeostasis. Briefly, the steady-state corresponds to zero excess concentrations, G = H = 0.

As food is digested, glucose levels rise and the feedback loop causes the pancreas to secret excess insulin. Glucose levels
then fall, due to cell uptake. The feedback loop then reacts to lower the secretion of insulin.

The dynamical model for G and H captures the essentials of insulin secretion and glucose uptake, after a big meal,
when no additional glucose is being added to the system. No derivation nor justification of this model is reproduced
here. Suffice it to say, that the model is a rough approximation to the physical situation, obtained by linearization of a
suitable nonlinear dynamical model.



Problem L5-1. (Brine Cascade Modeling Details)

Assume in the brine tank cascade model tank volumes V1 = 20, V2 = 40, V3 = 50 and equal rate in and out of each tank
of r = 10 liters per minute. The symbols x1(t), x2(t), x3(t) are the amounts of salt in kilograms in each tank at time t.
Complete these steps:

• Derive equations (1) using compartment analysis and the flow rate equation

dx

dt
= rate in− rate out.

Use textbook page references and equations to decrease the effort of the derivation.

• Explain how the numbers 0.5, 0.25 and 0.2 relate to the tank volume data and the rate r = 10.

• Explain the physical meaning of the initial data x1(0) = 15, x2(0) = 0, x3(0) = 0.

Problem L5-2. (Brine Cascade Solution Details)

Solve system (1) to obtain the answer

x1(t) = 15e−t/2,
x2(t) = −30e−t/2 + 30e−t/4,
x3(t) = 25e−t/2 − 150e−t/4 + 125e−t/5,

by completing these steps:

• Solve by the linear integrating factor method, with paper and pencil, applied to each differential equation in the
cascade.

• Solve with Maple’s dsolve(), or its equivalent in any computer algebra system.

• Graph the three component solutions on 0 ≤ t ≤ 10 in a single graphic.

Problem L5-3. (Glucose-Insulin Model Solution Details)

Solve system (2) to obtain the answer
G(t) = 100e−t/10 cos(t/5),
H(t) = 50e−t/10 sin(t/5),

by completing these steps:

• Solve with paper and pencil. Use the Cayley-Hamilton method for u′ = Au. This method says that G, H are
linear combinations of the two atoms obtained from the roots r of the characteristic equation det(A− rI) = 0.

• Solve with Maple’s dsolve(), or its equivalent in any computer algebra system.

• Graph the two component solutions G, H on 0 ≤ t ≤ 10.

Problem L5-4. (Glucose-Insulin Model Phase Plot)

Make a phase portrait of G, H which shows that the trajectory limits to equilibrium G = H = 0 as t → ∞. The plot
should display at least four different starting values for G, H, one of which is G(0) = 100, H(0) = 0.

Staple this page on top of the maple work sheets. Start paper and pencil solutions on a separate page.
Examples on the next page . . .
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Example 1. Solve the linear cascade x′
1 = −x1, x′

2 = x1 − 2x2 with paper and pencil, then check the
answer using Maple’s dsolve()..
Solution: The first equation has the form y′ = −y with growth-decay solution y = ce−x. Swapping symbols, x1(t) =
c1e
−t. Substitute the answer into x′2 = x1− 2x2, giving the linear equation x′2 = −2x2 + c1e

−t. This is a linear equation
y′ + 2y = c1e

−x, solved by the linear integrating factor method, as follows:

y′ + 2y = c1e
−x

(yW )′

W
= c1e

−x, where W = e
∫

2dx = e2x

(yW )′ = c1We−x, by cross-multiply
yW = c1

∫
e2xe−xdx + c2 = c1e

x + c2, by integration
y = c1e

−x + c2e
−2x, divide by W − e2x

Then a swap of variable names gives the answer x2 = c1e
−t + c2e

−2t and finally the cascade has been solved:

x1(t) = c1e
−t, x2(t) = c1e

−t + c2e
−2t.

The maple answer check is done as follows:

de:=diff(x1(t),t)=-x1(t),diff(x2(t),t)=x1(t)-2*x2(t);

dsolve({de},{x1(t),x2(t)});

The maple output is
{
x2 (t) = C2 e−t + e−2 t C1 , x1 (t) = C2 e−t

}
, which is equivalent to the answer obtained by

hand, via a re-naming of constants. The curious ordering of the factors and the underline that starts a constant name
are features of maple.

Example 2. Apply the Cayley-Hamilton method to u′ = Au, for A =

(
−1 −9
1 −1

)
.

Solution: Let vector u have components x1, x2. The differential equation u′ = Au in scalar form is the system

x′1 = −x1 − 9x2,
x′2 = x1 − x2.

The characteristic polynomial of A is the determinant of the matrix A − rI, where I is the 2 × 2 identity matrix.
Expansion of the determinant gives the polynomial r2 + 2r + 10. The characteristic equation is r2 + 2r + 10 = 0, which
has complex conjugate roots −1± 3i. The atoms for these two roots are e−t cos 3t and e−t sin 3t. The Cayley-Hamilton
method implies that for some constants c1, c2,

x1(t) = c1e
−t cos 3t + c2e

−t sin 3t.

Use the first differential equation x′1 = −x1 + 9x2 to solve for

x2 =
1

9
(x′1 + x1)

=
1

9

(
−x1 − 3c1e

−t sin 3t + 3c2e
−t cos 3t

)
= (c2/3− c1/9)e−t cos 3t + (−c1/3− c2/9)e−t sin 3t.

Example 3. Solve with Maple’s dsolve() the equation u′ = Au, for A =

(
−1 −9
1 −1

)
, u(0) =

(
300
0

)
.

Solution: Let vector u have components x1, x2, written in maple as x1, x2. Using the scalar form of system u′ = Au,
from the previous example, the maple code is:

de:=diff(x1(t),t)=-x1(t)-9*x2(t),diff(x2(t),t)=x1(t)-x2(t);

ic:=x1(0)=300,x2(0)=0;

dsolve({de,ic},{x1(t),x2(t)});

The answer reported by maple is {
x1 (t) = 300 e−t cos (3 t) , x2 (t) = 100 e−t sin (3 t)

}
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Example 4. Make a direction field plot and a phase portrait for the system u′ = Au, where A =(
−1 −9
1 −1

)
. Include one trajectory for u(0) =

(
300
0

)
.

Solution: The work will use a basic package available in all maple versions. Starting with maple 10, there are other
alternatives available in the dynamical systems package, perhaps slightly easier to use, especially for experiments.

To make a direction field plot:

de:=diff(x1(t),t)=-x1(t)-9*x2(t),diff(x2(t),t)=x1(t)-x2(t);

window:=x1=-400..400,x2=-100..100; tval:=-10..10:

with(DEtools):

DEplot({de},{x1(t),x2(t)},tval,window);

To make a phase portrait with threaded curves started at dots (300, 0), (200, 0), (100, 50), (50, 20):

de:=diff(x1(t),t)=-x1(t)-9*x2(t),diff(x2(t),t)=x1(t)-x2(t);

dot:=(a,b)->[x1(0)=a,x2(0)=b];

ic:=[dot(300,0),dot(200,0),dot(100,50),dot(50,20)];

window:=x1=-400..400,x2=-100..100; tval:=-10..10:

opts:=stepsize=0.05;

with(DEtools):

DEplot({de},{x1(t),x2(t)},tval,window,ic,opts);

Plots of x1(t), x2(t) can be produced with maple code similar to this example:

DEplot({de},{x1(t),x2(t)},t=0..8,

[[x1(0)=300,x2(0)=0]],scene=[t,x1],stepsize=0.05);

End of Maple Lab 5.
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