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Characteristic Equation

Definition 1 (Characteristic Equation)
Given a square matrix A, the characteristic equation of A is the polynomial equation

det(A — AI) = 0.

The determinant det(A — AI) is formed by subtracting A from the diagonal of A.
The polynomial p(x) = det(A—xI) is called the characteristic polynomial of matrix

A.
o If Ais2 X 2, then p(x) is a quadratic.
o If Ais3 X 3, then p(x) is a cubic.

e The determinant is expanded by the cofactor rule, in order to preserve factorizations.



Characteristic Equation Examples

Create det(A — 1) by subtracting & from the diagonal of A.

Evaluate by the cofactor rule.

A=(23), p@=|25% 2, |—e-aa-o

= 2—x)(5—x)(7T—x)




Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation.

if p(x) = (—x)" 4+ an_1(—x)" " + - - - ay, then the result is the equation
(_A)n —+ an_l(—A)”_l i al(—A) + aoI = 0,
where I is the n X m identity matrix and 0 is the n. X n zero matrix.

The 2 X 2 Case

a b
c d

x? + a;(—x) + ag. The Cayley-Hamilton theorem says

A2+a1(—A)—|—a0((1) (1)) = (8 8)

Then A = and for a; = trace(A), ap = det(A) we have p(x) =



Cayley-Hamilton Example

Assume

Then

0 0O 7
and the Cayley-Hamilton Theorem says that

(2I — A)(5I — A)(7TI — A) = (

o QOO
o QOO
o QOO



Euler’s Substitution and the Characteristic Equation

Definition. Euler’s Substitution for the second order equation i’ = At is

i = ve".

The symbol 7 is a real or complex constant and symbol V is a constant vector.

Theorem 2 (Euler Solution Equation from Euler’s Substitution)
Euler’s substitution applied to i’ = Au leads directly to the equation

|A — r’I| = 0.

This is perhaps the premier method for remembering the characteristic equation
for the second order vector-matrix equation i” = Ad.

Proof: Substitute @ = Ve into @’ = A# to obtain r2e"V = Ave™. Cancel the exponential, then

r2¥ = AV. Re-arrange to the homogeneous system (A —r2I ) v = 0. This homogeneous linear algebraic

equation has a nonzero solution ¥ if and only if the determinant of coefficients vanishes: |A — r2I| = 0.



Cayley-Hamilton-Ziebur Method for Second Order Systems

Theorem 3 (Cayley-Hamilton-Ziebur Structure Theorem for i” = Au)

The solution G(t) of second order equation @’(t) = At(t) is a vector lin-
ear combination of Euler solution atoms corresponding to roots of the equation
det(A — r2I) = 0.

The equation | A — r2I| = 0 is formed by substitution of A = 72 into the eigenanalysis

characteristic equation of A.

In symbols, the structure theorem says
i=d,A, +---+d Ay,

where Aq, ..., A, are Euler solution atoms corresponding to the roots 7 of the deter-
mining equation | A — 72I| = 0. Therefore, all vectors in the relation have real entries.
However, only 27 entries of vectors al, 500 &k, are arbitrary constants, the remaining
entries being dependent on them.



Proof of the Cayley-Hamilton-Ziebur Theorem
Consider the case when A is 2 X 2 (n = 2), because the proof details are similar in
higher dimensions. Expand |A — xI| = O to find the characteristic equation @ +
cx + d = 0, for some constants ¢, d. The Cayley-Hamilton theorem says that A% +

cA+d ( (1) (1) ) = ( 8 8 ) Let U be a solution of G”’(t) = Au(t). Multiply the

Cayley-Hamilton identity by vector U and simplify to obtain
A%l + cAi + dii = 0.

Using equation U”(t) = Au(t) backwards, we compute A?d = Au” = U"”. Re-
place the terms of the displayed equation to obtain the relation

d”" + cii” + dii = 0.

Each component y of vector U then satisfies the 4th order linear homogeneous equation
y@ + cy® 4 dy = 0, which has characteristic equation 7* + ¢r? + d = 0. This
equation is the expansion of determinant equation | A — 21| = 0. Therefore ¥ is a linear
combination of the Euler solution atoms found from the roots of this equation. It follows
then that U is a vector linear combination of the Euler solution atoms so identified. This
completes the proof.



A 2 X 2 Illustration
—75 25
/) ___ S5 S
Solve the system ©u” = Au, A = ( 50 —50
kl = 100, kz = 50, mq, = 2, moy = 1.

), which is a spring-mass syetm with

Solution: The eigenvalues of A are A\ = —25 and —100. Then the determining equation
|A — r2I| = 0 has complex roots 7 = =5¢ and 107 with corresponding Euler
solution atoms cos(4t), sin(5t), cos(10t), sin(10t). The eigenpairs of A are

(2(2)) (oo 1))

Then i is a vector linear combination of the Euler solution atoms

@(t) = d; cos(5t) + d, sin(5t) + ds cos(10t) + d, sin(10¢).



A 2 X 2 Illustration continued
How to Find 31 to 54

Substitute the formula
@(t) = d; cos(5t) + d, sin(5t) + ds cos(10t) + d sin(10¢)

into ©” = A, then solve for the unknown vectors cz;-, 7 = 1,2,3,4, by equating
coefficients of Euler solution atoms matching left and right:

Ad, = —25d,, Ad, = —25d,, Ad; = —100d;, Ad, = —100d,.

These eigenpair relationships imply formulas involving the eigenvectors of A. We get, for
some constants @, Gy, by, b2,

- 1 - 1 - 1 - 1
d1:a1(2)7 d2:b1(2)7 d3:a2<_1)7 d4:b2(_1)-



Summary for the 2 X 2 Illustration

@(t) = d; cos(5t) + d, sin(5t) + ds cos(10t) + d sin(10¢)

i(t) = (a; cos(5t) + by sin(5t)) ( ; )—I—(az cos(10t) + b, sin(10t)) < _} )



