Systems of Differential Equations

Matrix Methods

- Characteristic Equation
- Cayley-Hamilton
 - Cayley-Hamilton Theorem
 - An Example
- ullet The Cayley-Hamilton-Ziebur Method for $ec{\mathbf{u}}' = A ec{\mathbf{u}}$
- ullet A Working Rule for Solving $ec{\mathrm{u}}'=Aec{\mathrm{u}}$
 - Solving $2 imes 2 \ ec{\mathrm{u}}' = A ec{\mathrm{u}}$
 - Finding \vec{d}_1 and \vec{d}_2
 - A Matrix Method for Finding $\vec{\mathbf{d}}_1$ and $\vec{\mathbf{d}}_2$
- ullet Other Representations of the Solution \vec{u}
 - Another General Solution of $\vec{\mathrm{u}}'=A\vec{\mathrm{u}}$
 - Change of Basis Equation

Characteristic Equation

Definition 1 (Characteristic Equation)

Given a square matrix A, the characteristic equation of A is the polynomial equation

$$\det(A - rI) = 0.$$

The determinant $\det(A - rI)$ is formed by subtracting r from the diagonal of A. The polynomial $p(r) = \det(A - rI)$ is called the **characteristic polynomial**.

- ullet If A is 2×2 , then p(r) is a quadratic.
- ullet If A is 3 imes 3, then p(r) is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create $\det(A - rI)$ by subtracting r from the diagonal of A.

Evaluate by the cofactor rule.

$$A=\left(egin{array}{cc} 2&3\0&4 \end{array}
ight),\quad p(r)=\left|egin{array}{cc} 2-r&3\0&4-r \end{array}
ight|=(2-r)(4-r)$$

$$A = \left(egin{array}{ccc} 2 & 3 & 4 \ 0 & 5 & 6 \ 0 & 0 & 7 \end{array}
ight), \quad p(r) = \left|egin{array}{cccc} 2 - r & 3 & 4 \ 0 & 5 - r & 6 \ 0 & 0 & 7 - r \end{array}
ight| = (2 - r)(5 - r)(7 - r)$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix A satisfies its own characteristic equation.

If
$$p(r)=(-r)^n+a_{n-1}(-r)^{n-1}+\cdots a_0$$
, then the result is the equation

$$(-A)^n + a_{n-1}(-A)^{n-1} + \cdots + a_1(-A) + a_0I = 0,$$

where I is the $n \times n$ identity matrix and 0 is the $n \times n$ zero matrix.

The 2×2 Case

Then
$$A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$$
 and for $a_1={\sf trace}(A),\,a_0={\sf det}(A)$ we have $p(r)=r^2+a_1(-r)+a_0$. The Cayley-Hamilton theorem says

$$A^2+a_1(-A)+a_0\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight)=\left(egin{array}{cc} 0 & 0 \ 0 & 0 \end{array}
ight).$$

Cayley-Hamilton Example

Assume

$$A = \left(egin{array}{ccc} 2 & 3 & 4 \ 0 & 5 & 6 \ 0 & 0 & 7 \end{array}
ight)$$

Then

$$p(r) = \left|egin{array}{ccc} 2-r & 3 & 4 \ 0 & 5-r & 6 \ 0 & 0 & 7-r \end{array}
ight| = (2-r)(5-r)(7-r)$$

and the Cayley-Hamilton Theorem says that

$$(2I-A)(5I-A)(7I-A) = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight).$$

Cayley-Hamilton-Ziebur Theorem

Theorem 2 (Cayley-Hamilton-Ziebur Structure Theorem for $ec{\mathrm{u}}'=Aec{\mathrm{u}}$)

A component function $u_k(t)$ of the vector solution $\vec{\mathbf{u}}(t)$ for $\vec{\mathbf{u}}'(t) = A\vec{\mathbf{u}}(t)$ is a solution of the nth order linear homogeneous constant-coefficient differential equation whose characteristic equation is $\det(A-rI)=0$.

Meaning: The vector solution $\vec{\mathbf{u}}(t)$ of

$$\vec{\mathrm{u}}' = A\vec{\mathrm{u}}$$

is a vector linear combination of the Euler solution atoms constructed from the roots of the characteristic equation $\det(A - rI) = 0$.

Proof of the Cayley-Hamilton-Ziebur Theorem

Consider the case n = 2, because the proof details are similar in higher dimensions.

$$r^2+a_1r+a_0=0$$
 Expanded characteristic equation $A^2+a_1A+a_0I=0$ Cayley-Hamilton matrix equation $A^2\vec{\mathrm{u}}+a_1A\vec{\mathrm{u}}+a_0\vec{\mathrm{u}}=\vec{0}$ Right-multiply by $\vec{\mathrm{u}}=\vec{\mathrm{u}}(t)$ $\vec{\mathrm{u}}''=A\vec{\mathrm{u}}'=A^2\vec{\mathrm{u}}$ Differentiate $\vec{\mathrm{u}}'=A\vec{\mathrm{u}}$ Replace $A^2\vec{\mathrm{u}}\to\vec{\mathrm{u}}''$. $A\vec{\mathrm{u}}\to\vec{\mathrm{u}}'$

Then the components x(t), y(t) of $\vec{\mathbf{u}}(t)$ satisfy the two differential equations

$$x''(t) + a_1x'(t) + a_0x(t) = 0,$$

 $y''(t) + a_1y'(t) + a_0y(t) = 0.$

This system implies that the components of $\vec{\mathbf{u}}(t)$ are solutions of the second order DE with characteristic equation $\det(A - rI) = 0$.

The Cayley-Hamilton-Ziebur Method for $\vec{\mathrm{u}}'=A\vec{\mathrm{u}}$

Let $\operatorname{atom}_1, \ldots, \operatorname{atom}_n$ denote the Euler solution atoms constructed from the nth order characteristic equation $\det(A-rI)=0$ by Euler's Theorem. The solution of

$$\vec{\mathrm{u}}' = A\vec{\mathrm{u}}$$

is given for some constant vectors $\vec{\mathbf{d}}_1, \dots, \vec{\mathbf{d}}_n$ by the equation

$$\vec{\mathrm{u}}(t) = (\mathrm{atom}_1)\vec{\mathrm{d}}_1 + \cdots + (\mathrm{atom}_n)\vec{\mathrm{d}}_n$$

Warning: The vectors $\vec{\mathbf{d}}_1, \ldots, \vec{\mathbf{d}}_n$ are not arbitrary; they depend on the n initial conditions $u_k(0) = c_k, k = 1, \ldots, n$. The number of constants in these n vectors is n^2 . Picard's Existence Theorem implies that exactly n of these constant are arbitrary, while the remaining $n^2 - n$ (or n(n-1)) constants are completely determined in terms of the n arbitrary constants. In the 2×2 case there are 2 arbitrary constants a, b. The remaining two constants c, d are completely determined in terms of a, b.

Cayley-Hamilton-Ziebur Method Conclusions

- ullet Solving $ec{\mathbf{u}}' = A ec{\mathbf{u}}$ is reduced to finding the constant vectors $ec{\mathbf{d}}_1, \ldots, ec{\mathbf{d}}_n$.
- The vectors $\vec{\mathbf{d}}_j$ are **not arbitrary**. They are **uniquely determined** by A and $\vec{\mathbf{u}}(0)$! A general method to find them is to differentiate the equation

$$\vec{\mathrm{u}}(t) = (\mathrm{atom}_1)\vec{\mathrm{d}}_1 + \cdots + (\mathrm{atom}_n)\vec{\mathrm{d}}_n$$

n-1 times, then set t=0 and replace $\vec{\mathbf{u}}^{(k)}(0)$ by $A^k\vec{\mathbf{u}}(0)$ [because $\vec{\mathbf{u}}'=A\vec{\mathbf{u}}$, $\vec{\mathbf{u}}''=AA\vec{\mathbf{u}}$, etc]. The resulting n equations in vector unknowns $\vec{\mathbf{d}}_1,\ldots,\vec{\mathbf{d}}_n$ can be solved by elimination.

• If all atoms constructed are base atoms constructed from real roots, then each \mathbf{d}_j is a constant multiple of a real eigenvector of A. Atom e^{rt} corresponds to the eigenpair equation $A\vec{\mathbf{v}} = r\vec{\mathbf{v}}$.

Cayley-Hamilton-Ziebur Shortcut for 2 imes 2 systems

Example

Let's solve
$$\vec{u}'=\left(\begin{array}{cc}1&2\\2&1\end{array}\right)\vec{u}, \quad \vec{u}(0)=\left(\begin{array}{cc}-1\\2\end{array}\right)$$
, which is the 2×2 system

$$\left\{egin{array}{ll} x'(t) &= x(t) \,+\, 2y(t), \ x(0) &= -1, \ y'(t) &= 2x(t) \,+\, y(t), \ y(0) &= 2, \end{array}
ight. \quad ec{\mathrm{u}}(t) = \left(egin{array}{ll} x(t) \ y(t) \end{array}
ight).$$

The characteristic polynomial of the non-triangular matrix $A=\left(egin{array}{cc}1&2\\2&1\end{array}
ight)$ is

$$\left| egin{array}{cc} 1-r & 2 \ 2 & 1-r \end{array}
ight| = (1-r)^2 - 4 = (r+1)(r-3).$$

Because the roots are r=-1, r=3, then the Euler solution atoms are e^{-t} , e^{3t} .

Then $\vec{\bf u}$ is a vector linear combination of the solution atoms, $\vec{\bf u}=e^{-t}\vec{\bf d}_1+e^{3t}\vec{\bf d}_2$, or equivalently,

$$x(t)=ae^{-t}+be^{3t}$$
 and $y(t)=ce^{-t}+de^{3t}.$

How to Find a, b, c, d: C-H-Z Shortcut for 2×2

Known:

$$\left\{egin{array}{ll} x'(t)&=&x(t)\ y'(t)&=&2x(t)\ +&y(t), \end{array}
ight. \quad ec{\mathrm{u}}(t)=\left(egin{array}{ll} x(t)\ y(t) \end{array}
ight),$$

and

$$x(t) = ae^{-t} + be^{3t}, \ y(t) = ce^{-t} + de^{3t}.$$

The symbols a, b will be arbitrary constants in the solution, expected because 2 initial conditions are required by Picard's Theorem. We will find c, d in terms of a, b, by this Cayley-Hamilton-Ziebur shortcut:

We know x(t), so we find y(t) by solving for y(t) in one of the differential equations, namely the first one: x'(t) = x(t) + 2y(t). Then $y(t) = \frac{1}{2}(x'-x)$. Substitute the known expression for x(t) to find y(t):

$$y(t) = rac{1}{2}x' - rac{1}{2}x = rac{1}{2}(ae^{-t} + be^{3t})' - rac{1}{2}(ae^{-t} + be^{3t}) \ = rac{1}{2}(-ae^{-t} + 3be^{3t} - ae^{-t} - be^{3t}) = -ae^{-t} + be^{3t}.$$

The answer: c = -a, d = b. Then the general solution of the system is

$$x(t) = ae^{-t} + be^{3t}, \quad y(t) = -ae^{-t} + be^{3t}.$$

How to Find a, b, c, d from x(0) = -1, y(0) = 2.

Known:

$$\left\{ egin{array}{ll} x(t) &=& ae^{-t} \,+\, be^{3t}, \ y(t) &=& -ae^{-t} \,+\, be^{3t}. \end{array}
ight.$$

Set t=0 in these two equations to obtain the linear system of algebraic equations for a,b:

$$\left\{ egin{array}{lll} -1 &=& ae^0 \,+\, be^0, \ 2 &=& -ae^0 \,+\, be^0. \end{array}
ight.$$

Because $e^0 = 1$, then these equations become

$$\left(egin{array}{cc} 1 & 1 \ -1 & 1 \end{array}
ight) \left(egin{array}{cc} a \ b \end{array}
ight) = \left(egin{array}{cc} -1 \ 2 \end{array}
ight),$$

which is a system studied in Linear Algebra. The solution is $a=-\frac{3}{2},b=\frac{1}{2}$. Then the solution of the system is

$$\left\{egin{array}{ll} x(t) &=& -rac{3}{2}e^{-t} \;+\; rac{1}{2}e^{3t}, \ y(t) &=& rac{3}{2}e^{-t} \;+\; rac{1}{2}e^{3t}. \end{array}
ight.$$

How to Find \vec{d}_1 and \vec{d}_2 : C-H-Z Elimination Method for 2×2

We solve for vectors $\vec{\mathbf{d}}_1$, $\vec{\mathbf{d}}_2$ in the equation

$$\vec{\mathrm{u}} = e^{-t}\vec{\mathrm{d}}_1 + e^{3t}\vec{\mathrm{d}}_2.$$

Advice: Define $\vec{\mathbf{d}}_0 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. Differentiate the above relation. Replace $\vec{\mathbf{u}}'$ via $\vec{\mathbf{u}}' =$

 $A\vec{\mathbf{u}}$, then set t=0 and replace $\vec{\mathbf{u}}(0)$ by $\vec{\mathbf{d}}_0$ in the two formulas to obtain the relations

$$egin{array}{lll} ec{
m d}_0 &=& e^0ec{
m d}_1 \,+& e^0ec{
m d}_2 \ Aec{
m d}_0 &=& -e^0ec{
m d}_1 \,+\, 3e^0ec{
m d}_2 \end{array}$$

We solve for \vec{d}_1 , \vec{d}_2 by elimination. Adding the equations gives $\vec{d}_0 + A\vec{d}_0 = 4\vec{d}_2$ and then $\vec{d}_0 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ implies

$$egin{array}{lll} ec{
m d}_1 &= rac{3}{4}ec{
m d}_0 - rac{1}{4}Aec{
m d}_0 = \left(egin{array}{c} -3/2 \ 3/2 \end{array}
ight), \ ec{
m d}_2 &= rac{1}{4}ec{
m d}_0 + rac{1}{4}Aec{
m d}_0 = \left(rac{1/2}{1/2}
ight). \end{array}$$

Summary of the 2×2 Illustration

The solution of the dynamical system

$$ec{\mathrm{u}}' = \left(egin{array}{cc} 1 & 2 \ 2 & 1 \end{array}
ight)ec{\mathrm{u}}, \quad ec{\mathrm{u}}(0) = \left(egin{array}{cc} -1 \ 2 \end{array}
ight)$$

is a vector linear combination of solution atoms e^{-t} , e^{3t} given by the equation

$$ec{\mathrm{u}} = e^{-t} \left(egin{array}{c} -3/2 \ 3/2 \end{array}
ight) + e^{3t} \left(egin{array}{c} 1/2 \ 1/2 \end{array}
ight).$$

Eigenpairs for Free

Each vector appearing in the formula is a scalar multiple of an eigenvector, because eigenvalues -1, 3 are real and distinct. The simplified eigenpairs are

$$\left(-1,\left(egin{array}{c}-1\\1\end{array}
ight)\right),\quad \left(3,\left(egin{array}{c}1\\1\end{array}
ight)
ight).$$

A Matrix Method for Finding \vec{d}_1 and \vec{d}_2

The Cayley-Hamilton-Ziebur Method produces a unique solution for \vec{d}_1 , \vec{d}_2 because the coefficient matrix

$$\left(egin{array}{cc} e^0 & e^0 \ -e^0 & 3e^0 \end{array}
ight)$$

is exactly the Wronskian W of the basis of atoms e^{-t} , e^{3t} evaluated at t=0. This same fact applies no matter the number of coefficients $\vec{\mathbf{d}}_1$, $\vec{\mathbf{d}}_2$, ... to be determined.

Let $\vec{d}_0 = \vec{u}(0)$, the initial condition. The answer for \vec{d}_1 and \vec{d}_2 can be written in matrix form in terms of the transpose W^T of the Wronskian matrix as

$$\langle ec{\mathrm{d}}_1 | ec{\mathrm{d}}_2
angle = \langle ec{\mathrm{d}}_0 | A ec{\mathrm{d}}_0
angle (W^T)^{-1}$$
 .

Symbol $\langle \vec{A} | \vec{B} \rangle$ is the augmented matrix of column vectors \vec{A}, \vec{B} .

Solving a 2×2 Initial Value Problem by the Matrix Method

$$ec{\mathrm{u}}'=Aec{\mathrm{u}}, \quad ec{\mathrm{u}}(0)=\left(egin{array}{c} -1 \ 2 \end{array}
ight), \quad A=\left(egin{array}{c} 1 & 2 \ 2 & 1 \end{array}
ight).$$

Then
$$ec{\mathbf{d}}_0=\left(egin{array}{c} -1 \\ 2 \end{array}
ight), A ec{\mathbf{d}}_0=\left(egin{array}{c} 1 & 2 \\ 2 & 1 \end{array}
ight)\left(egin{array}{c} -1 \\ 2 \end{array}
ight)=\left(egin{array}{c} 3 \\ 0 \end{array}
ight)$$
 and

$$\langle ec{\mathrm{d}}_1 | ec{\mathrm{d}}_2
angle = \left(egin{array}{cc} -1 & 3 \ 2 & 0 \end{array}
ight) \left(\left(egin{array}{cc} 1 & 1 \ -1 & 3 \end{array}
ight)^T
ight)^{-1} = \left(egin{array}{cc} -rac{3}{2} & rac{1}{2} \ rac{3}{2} & rac{1}{2} \end{array}
ight).$$

Extract
$$\vec{d}_1 = \begin{pmatrix} -\frac{3}{2} \\ \frac{3}{2} \end{pmatrix}$$
, $\vec{d}_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$. Then the solution of the initial value problem is

$$ec{\mathrm{u}}(t) = e^{-t} \left(egin{array}{c} -rac{3}{2} \ rac{3}{2} \end{array}
ight) + e^{3t} \left(rac{1}{2} \ rac{1}{2} \end{array}
ight) = \left(egin{array}{c} -rac{3}{2}e^{-t} + rac{1}{2}e^{3t} \ rac{3}{2}e^{-t} + rac{1}{2}e^{3t} \end{array}
ight).$$

Other Representations of the Solution \vec{u}

Let $y_1(t), \ldots, y_n(t)$ be a solution basis for the nth order linear homogeneous constant-coefficient differential equation whose characteristic equation is $\det(A - rI) = 0$.

Consider the solution basis $atom_1$, $atom_2$, ..., $atom_n$. Each atom is a linear combination of $\vec{y}_1, \ldots, \vec{y}_n$. Replacing the atoms in the formula

$$\vec{\mathrm{u}}(t) = (\mathrm{atom}_1)\vec{\mathrm{d}}_1 + \cdots + (\mathrm{atom}_n)\vec{\mathrm{d}}_n$$

by these linear combinations implies there are constant vectors $\vec{\mathbf{D}}_1, \ldots, \vec{\mathbf{D}}_n$ such that

$$ec{\mathrm{u}}(t) = y_1(t)ec{\mathrm{D}}_1 + \cdots + y_n(t)ec{\mathrm{D}}_n$$

Another General Solution of $\vec{\mathrm{u}}'=A\vec{\mathrm{u}}$

Theorem 3 (General Solution)

The unique solution of $\vec{\mathrm{u}}'=A\vec{\mathrm{u}},\,\vec{\mathrm{u}}(0)=\vec{\mathrm{d}}_0$ is

$$ec{\mathrm{u}}(t) = \phi_1(t)ec{\mathrm{u}}_0 + \phi_2(t)Aec{\mathrm{u}}_0 + \cdots + \phi_n(t)A^{n-1}ec{\mathrm{u}}_0$$

where ϕ_1, \ldots, ϕ_n are linear combinations of atoms constructed from roots of the characteristic equation $\det(A - rI) = 0$, such that

Wronskian
$$(\phi_1(t),\ldots,\phi_n(t))|_{t=0}=I.$$

Proof of the theorem

Proof: Details will be given for n=3. The details for arbitrary matrix dimension n is a routine modification of this proof. The Wronskian condition implies ϕ_1 , ϕ_2 , ϕ_3 are independent. Then each atom constructed from the characteristic equation is a linear combination of ϕ_1 , ϕ_2 , ϕ_3 . It follows that the unique solution \vec{u} can be written for some vectors \vec{d}_1 , \vec{d}_2 , \vec{d}_3 as

$$\vec{\mathbf{u}}(t) = \phi_1(t)\vec{\mathbf{d}}_1 + \phi_2(t)\vec{\mathbf{d}}_2 + \phi_3(t)\vec{\mathbf{d}}_3.$$

Differentiate this equation twice and then set t = 0 in all 3 equations. The relations $\vec{u}' = A\vec{u}$ and $\vec{u}'' = A\vec{u}' = AA\vec{u}$ imply the 3 equations

$$\begin{array}{llll} \vec{\mathrm{d}}_0 & = & \phi_1(0)\vec{\mathrm{d}}_1 & + & \phi_2(0)\vec{\mathrm{d}}_2 & + & \phi_3(0)\vec{\mathrm{d}}_3 \\ A\vec{\mathrm{d}}_0 & = & \phi_1'(0)\vec{\mathrm{d}}_1 & + & \phi_2'(0)\vec{\mathrm{d}}_2 & + & \phi_3'(0)\vec{\mathrm{d}}_3 \\ A^2\vec{\mathrm{d}}_0 & = & \phi_1''(0)\vec{\mathrm{d}}_1 & + & \phi_2''(0)\vec{\mathrm{d}}_2 & + & \phi_3''(0)\vec{\mathrm{d}}_3 \end{array}$$

Because the Wronskian is the identity matrix I, then these equations reduce to

$$egin{array}{lll} \vec{\mathrm{d}}_0 &=& 1 \vec{\mathrm{d}}_1 \; + \; 0 \vec{\mathrm{d}}_2 \; + \; 0 \vec{\mathrm{d}}_3 \ A \vec{\mathrm{d}}_0 &=& 0 \vec{\mathrm{d}}_1 \; + \; 1 \vec{\mathrm{d}}_2 \; + \; 0 \vec{\mathrm{d}}_3 \ A^2 \vec{\mathrm{d}}_0 &=& 0 \vec{\mathrm{d}}_1 \; + \; 0 \vec{\mathrm{d}}_2 \; + \; 1 \vec{\mathrm{d}}_3 \end{array}$$

which implies $\vec{\mathbf{d}}_1 = \vec{\mathbf{d}}_0, \vec{\mathbf{d}}_2 = A\vec{\mathbf{d}}_0, \vec{\mathbf{d}}_3 = A^2\vec{\mathbf{d}}_0.$

The claimed formula for $\vec{\mathbf{u}}(t)$ is established and the proof is complete.

Change of Basis Equation

Illustrated here is the change of basis formula for n=3. The formula for general n is similar.

Let $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ denote the linear combinations of atoms obtained from the vector formula

$$(\phi_1(t),\phi_2(t),\phi_3(t))=\left(\operatorname{\mathsf{atom}}_1(t),\operatorname{\mathsf{atom}}_2(t),\operatorname{\mathsf{atom}}_3(t)
ight)C^{-1}$$

where

$$C = \text{Wronskian}(\text{atom}_1, \text{atom}_2, \text{atom}_3)(0).$$

The solutions $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are called the **principal solutions** of the linear homogeneous constant-coefficient differential equation constructed from the characteristic equation $\det(A - rI) = 0$. They satisfy the initial conditions

Wronskian
$$(\phi_1, \phi_2, \phi_3)(0) = I$$
.