Differential Equations 2280
Midterm Exam 2
Exam Date: 30 March 2018 at 12:50 pm
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Chapter 3) 96

A - (a) $[60 \%]$ Find by any applicable method the steady-state periodic solution for the mechanical system -4

$$
x^{\prime \prime}(t)+8 x^{\prime}(t)+16 x(t)=289(\cos (t)-10 \sin (t))
$$

A (b) [40\%] Variation of parameters can solve the electrical/mechanical problem

$$
y^{\prime \prime}(x)+8 y^{\prime}(x)+16 y(x)=f(x)
$$

because of superposition $y=y_{p}+y_{h}$. Solve for the hornogeneous solution $y_{h}(x)$ and then write the variation of parameters formula for a particular solution $y_{p}(x)$.

Expected in (b): (1) Characteristic equation and Euler atoms. (2) Wronskian, (3) Explicit formula for y_{h}. (4) Integral formula for y_{p}, simplified as much as possible, integrals unevaluated.
(a)

$$
\begin{aligned}
& x=A \cos (t)+B \sin (t) \\
& x^{\prime}=-A \sin (t)+B \cos (t) \\
& x^{\prime \prime}=-A \cos (t)-B \sin (t)
\end{aligned}
$$

$$
\begin{array}{r}
7810 \\
2840 \\
-\quad 287 \\
\hline 2501
\end{array}
$$

$$
16 \lambda=-25.1
$$

$$
\begin{aligned}
& x^{\prime}=-A \sin (t)+B \cos (t) \\
& x^{\prime \prime}=-A \cos (t)-B \sin (t) \\
& \begin{aligned}
-A \cos (t)-B & \sin (t)-8 A \sin (t)+8 B \cos (t)+16 A \cos (t)+16 B \sin (t) \quad \begin{array}{r}
2890 \\
289 \\
-A+8 B+16 A
\end{array}
\end{aligned} \\
& \text { signemm }-B+8 A+16 B=-2890 \quad \begin{array}{l}
8 B+15 A=289 \\
+8 A+15 B=-2890 \quad B=\frac{3179}{30}
\end{array} \\
& -A+8 B+16 A=289 \\
& 8 B+15 A=289 \\
& \text { JOB }=379 \\
& \text { RW. Wrong } A, B: A=95, B=-142 \\
& A=95, \quad B=-142 \\
& \text { (b) } r^{2}+8 r+16 \text {, atoms: } 6 e^{-4 k}, e^{-4 *} \leqslant y_{1}=x e^{-4 x}, y_{2}=e^{-4 x} \\
& \omega(x)=\left|\begin{array}{l}
*-4 k \\
e^{*-4 *}-4-4 * x^{-4 k} \\
e^{-4 *} \\
-4 e^{-4 k}
\end{array}\right|=-e^{-8 k} \\
& y(x)=e^{-4 x}\left(\frac{-x e^{-4 x} d x}{-e^{-8 x}}+x e^{-4 x}\left(\frac{e^{-4 x} d x}{-e^{-8 x}}=\mid e^{-4 x} \int x e^{4 x} d x-x e^{-4 x} \int e^{4 x} d x\right.\right.
\end{aligned}
$$

2. (Laplace Theory)

A - (a) $[50 \%]$ Assume $f(t)$ is of exponential order. Find $f(t)$ in the relation

$$
\left.\left(\frac{d}{d s} \mathcal{L}(f(t))\right)\right|_{s \rightarrow(s-3)}+\frac{\mathcal{L}(t)}{s^{2}+4}+\mathcal{L}(\sin (t))=0
$$

(b) $[50 \%]$ Solve by Laplace's method

$$
x^{\prime \prime}(t)+4 x^{\prime}(t)+3 x(t)=4 e^{-\iota}, \quad x(0)=x^{\prime}(0)=0
$$

$$
\begin{aligned}
& \text { (a) }\left(\frac{d}{d s} \mathcal{L}(f(t))\right)=\mathcal{L}(-t f(t)) \\
& \frac{\mathcal{L}(t)}{s^{2}+4}=\frac{1}{s^{2}\left(s^{2}+4\right)} *=\frac{a}{s^{2}}+\frac{b}{s^{2}+4}=\frac{1 / 4}{s^{2}}+\frac{-1 / 4}{s^{2}+4}=f\left(t / 4-\frac{1}{8} \sin 2 t\right)
\end{aligned}
$$

$$
\mathcal{L}\left(\sin (t)=\frac{1}{s^{2}+1} .\right.
$$

$T_{\text {afuncti, of } s^{2} \text {, using Heaviside }}$

$$
\begin{aligned}
& e^{3 t}+t f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+4\right)}+\frac{1}{s^{2}+1}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{4 s}-\frac{1}{4\left(s^{2}+4\right)}+\frac{1}{s^{2+1}}\right\}
\end{aligned}
$$

(b) $s^{2} x+4 s x+3 x=\frac{4}{s+1} \Rightarrow x\left(s^{2}+4 s+3\right)=\frac{4}{s+1}$

$$
\begin{aligned}
& x=\frac{4}{(s+1)(s+3)}=\frac{A s+B}{(s+1)^{2}}+\frac{c}{s+3} \\
& A s^{2}+B s+3 A s+3 B+C s^{2}+2 C s+C \\
& A+C=0 \Rightarrow A=-C \\
& x=\frac{1-s}{(s+1)^{8}}+\frac{1}{s+3} \\
& 3 A+B+2 C=0 \Rightarrow A=-B \\
& 3 B+C=A \quad \begin{array}{l}
B=C \\
4 B=4
\end{array} \\
& B=1=C \\
& A=-1 \\
& x(t)=2 t e^{-t}-e^{-t}+e^{-3 t}
\end{aligned}
$$

3. (Laplace Theory) 100
(a) $[40 \%]$ Solve $x^{\prime \prime \prime}+x^{\prime \prime}=0, x(0) \rightleftharpoons 1, x^{\prime}(0)=1, x^{\prime \prime}(0)=0$ by Laplace's Method.

A Expected in (a): (1) Laplace's method steps to find $\mathcal{L}(x(t))$, (2) Backward table steps to find $x(t)$, (3) An answer check.
(b) $[60 \%]$ Solve the system $x^{\prime}=' 2 x+y+10, y^{\prime}=x+2 y+20, x(0)=0, y(0)=0$ by Laplace's Method.

A Expected in (b): (1) Laplace's method steps to find a system of linear algebraic equations for $\mathcal{L}(x(t)$) and $\mathcal{L}(y(t))$. (2) Cramer's Rule steps to find $\mathcal{L}(x(t))$ and $\mathcal{L}(y(t))$. (3) Backward Laplace table steps to find $s(t), y(t)$. (4) Check the answer for sanity, e.g., compute the Euler atoms.

$$
\begin{aligned}
& \text { (a) } x^{\prime \prime \prime}+x^{\prime \prime}=0 \quad x(0)=1, x^{\prime}(0)=1, x^{\prime \prime}(0)=0 \\
& s^{3} X-s^{2}-s+s^{2} X-s-1=0 \\
& \left(s^{3}+s^{2}\right) X=s^{2}+2 s+1 \quad x=\frac{(s+1)^{2}}{(s+1) s^{2}}=\frac{s+1}{s^{2}}=\frac{1}{s}+\frac{1}{s^{2}} \\
& x(t)=1+t \\
& x^{\prime \prime}(t)=0 \\
& x^{\prime \prime \prime}(t)=0 \\
& x^{\prime \prime}(t)+x^{\prime \cdots}(t)=0 \\
& x(0)=1 \\
& x^{\prime}(0)=1 \\
& \text { b) } \\
& s X=2 X+Y+\frac{10}{5} \quad(3-2) X-Y=\frac{10}{5} \\
& s Y=X+2 Y+\frac{20}{S}(s-2) Y-X=\frac{20}{s} \\
& (s-2)^{2} x-(s-2) Y=\frac{10(s-2)}{s} \\
& -X \quad(s-2) Y=\frac{20}{5} \\
& (s-2)^{2} x-x=\frac{10(s-2)}{s}+\frac{20}{s} \\
& X=\frac{10(s-2)+20}{s\left(s^{2}-4 s+3\right)}=\frac{10}{(s-3)(s+1)} \\
& x(t)=L^{-1}\left(\frac{5}{5-3}\right)+I^{-1}\left(\frac{-5}{s-1}\right) \\
& x(t)=5 e^{3 t}+5 e^{t} \\
& 3^{2} 45-5 e^{t}-5 e^{t}=10 e^{3 t}-10 e^{t}+y+10
\end{aligned}
$$

4. (Systems of Differential Equations)

The Eigenanalysis Method (section 5.2) says that, for a $3 \times 3 \operatorname{system} \frac{d}{d t} \vec{u}(t)=A \vec{u}(t)$, the general solution is $\vec{u}(t)=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}+c_{3} \vec{v}_{3} e^{\lambda_{3} t}$. In the solution formula, $\left(\lambda_{1}, \vec{v}_{1}\right),\left(\lambda_{2}, \vec{v}_{2}\right),\left(\lambda_{3}, \vec{v}_{3}\right)$ arc cigenpairs of A. Assume given the two 3×3 matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 2 & 2 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

A (a) $[50 \%]$ Matrix A has only two cigenpairs. Display cigenanalysis details for A. Then explain why the Eigenanalysis Method fails. A (b) $[50 \%]$ Find by any method the general solution of $\frac{d}{d t} \vec{u}(t)=B \vec{u}(t)$.

$$
\begin{aligned}
& \left.\operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}
2-\lambda & 1 & 2 \\
1 & 2-\lambda & 2 \\
0 & 0 & 3-\lambda
\end{array}\right)|=(3-\lambda)| \begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array} \right\rvert\,=(3-\lambda)\left(4-4 \lambda+\lambda^{2}-1\right) \\
& =(3-\lambda)\left(\lambda^{2}-4 \lambda+3\right)=(3-\lambda)(\lambda-1)(\lambda-3) \quad x=y-2 z \\
& (A-3 A)=\left(\begin{array}{ccc|c}
-1 & 1 & 2 & 0 \\
1 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad x=0 \\
& (A-I)=\left(\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
1 & 1 & 2 & 0 \\
0 & 0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

Eigenanalysis fails Lecurse A has

Using method (4) in problem 5:
Find U_{12}, U_{3} by section /.5 shortcut

$$
\begin{aligned}
& u_{3}^{\prime}=3 u_{3} \Rightarrow u_{3}=c_{3} e^{3 t} \\
& u_{2}^{\prime}=2 u_{2} \Rightarrow u_{2}=c_{2} e^{2 t} \\
& u_{1}^{\prime}=2 u_{1}+c_{2} e^{2 t} \\
& u_{1}^{\prime}-2 u_{1}=c_{2} e^{2 t}
\end{aligned}
$$

$$
(B-2 I \mid 0)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \Rightarrow \quad v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad u_{2}^{\prime}=2 u_{2} \Rightarrow u_{2}=c_{2} e^{2 t}
$$

$$
(\bar{B}-3 I \mid 0)=\left(\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u_{1}^{\prime}=2 u_{1}+c_{2} e^{2 t}
$$

K

$$
\begin{aligned}
& \left(u_{1} e^{-2 t}\right)^{\prime}=c_{2} \\
& u_{1}=c_{2} t e^{2 t}+c_{1} e^{2 t} \\
& u
\end{aligned}=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{ccc}
e^{2 t} & t e^{2 t} & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{3 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \quad \text { Solution ta } \quad \vec{u}=B \vec{u}
$$

5. (Systems of Differential Equations)

A system $\frac{d}{d l} \vec{u}=A \vec{u}$ with A an $n \times n$ real matrix can be solved by many methods. Consider below only these possibilities:
(1) Cayley-Hamilton-Ziebur method, from section 4.2. (2) Eigenanalysis method from section 5.2. (3) Laplace's method, from chapter 7. (4) First order linear integrating factor method from section 1.5.
A (a) $[20 \%]$ A certain system $\frac{d}{d t} \vec{u}=A \vec{u}$ is supplied with 4×4 matrix A having four eigenpairs, but no real eigenvalues. It can be solved using the eigenanalysis method from section 5.2. Which of methods (1), (3), (4) might be possible to use? Don't do any details or illustrations: kindly write a sentence and explain your logic.

A (b) $[40 \%]$ Solve for the general solution by the Caylcy-Hamilton-Ziebur shortcut (chapters 4 and 5):

$$
\left.\frac{d}{d t} \vec{u}=B \vec{u}, \quad B=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] \quad \text { (eigenvalues }=2,4\right)
$$

A (c) [40\%] Choose any method applicable and solve for the general solution of system

$$
\left\{\begin{aligned}
x^{\prime}(t) & =x(t) \\
y^{\prime}(t) & =y(t)+z(t) \\
z^{\prime}(t) & =x(t)
\end{aligned}\right.
$$

(a) Laplaces method, would work because it would just be u Matter of solving algebraic equations instead of differential oms CHZ would also work becanm is just a faster method* of eigenannlysis. $\left.\begin{array}{l}B+ \\ (B-2 I)\end{array}\right)=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0\end{array}\right] \quad V_{1}=\binom{1}{-1}$ and is not strong enough.
(b) * CHZ uses Euler $\begin{aligned} & (B-4 I)=\left[\begin{array}{cc|c}-1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right] \quad v_{1}=\binom{1}{1} \\ & C H z: \vec{u}=\overrightarrow{d_{1}} e^{2 t}+\overrightarrow{d_{2}} e^{4 t}\end{aligned} \left\lvert\, \begin{aligned} & \vec{u}=c_{1} e^{2 t}\binom{1}{-1}+c_{2} e^{4 t}\binom{1}{1} \quad \begin{array}{l}\text { It is } \\ \overrightarrow{d_{1}}, \vec{d} \\ \text { elgen }\end{array} \\ & \end{aligned}\right.$ atoms (real) and neal vectors dy,., d_{n} avoiding burst of Complex el gen vico
and Euler exponents. formula in $e^{i \theta}$.
(c)

$$
\begin{aligned}
& x^{\prime}(t)=x(t) \Rightarrow x(t)=c_{1} e^{t} \\
& z^{\prime}(t)=c_{1} e^{t} \Rightarrow z(t)=c_{1} e^{t} \\
& y^{\prime}(t)-y(t)=c_{1} e^{t}\left(y(t) e^{t}\right)=c_{1} \Rightarrow y(t)=c_{1} t e^{t}+c_{2} e^{t} \\
& \text { using method (4) }
\end{aligned}
$$

The a fact That CH Z \bar{d}_{1}, \bar{d}_{2} are eigen vectors

$$
(c)
$$

