
Differential Equations 2280
Midterm Exam 2 with Solutions

Exam Date: 31 March 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4.

1. (Chapter 3)

(a) [70%] Find by any applicable method the steady-state periodic solution for the current equation
I ′′ + 2I ′ + 5I = 10 cos(t)− 100 sin(t).

(b) [30%] Linear algebra can find the solution of the current equation I ′′+2I ′+5I = 10 cos(t)−100 sin(t)
having initial conditions I(0) = 1, I ′(0) = 0. Write the linear algebraic equations for c1, c2, but to save
time don’t solve for c1, c2.

Answer:
Part (a) Answer: Iss(t) = cos t− 2 sin t.
Variation of Parameters.
Solve x′′ + 2x′ + 5x = 0 to get xh = c1x1 + c2x2, x1 = e−t cos 2t, x2 = e−t sin 2t. Compute the Wronskian
W = x1x

′
2 − x′1x2 = 4e−2t. Then for f(t) = −10 sin(t),

xp = x1

∫
x2
−f
W

dt+ x2

∫
x1

f

W
dt.

The integrations are too difficult, so the method won’t be pursued.
Undetermined Coefficients.
The trial solution by Rule I is I = d1 cos t + d2 sin t. The homogeneous solutions have exponential factors,
therefore the Euler solution atoms in the trial solution cannot be solutions of the homogeneous problem,
hence Rule II does not apply.
Substitute the trial solution into the non-homogeneous equation to obtain the answers d1 = 1, d2 = −2. The
unique periodic solution Iss is extracted from the general solution I = Ih + Ip by crossing out all negative
exponential terms (terms which limit to zero at infinity). Because Ip = d1 cos t + d2 sin t = cos t − 2 sin t
and the homogeneous solution xh has negative exponential terms, then

Iss = cos t− 2 sin t.

Laplace Theory.
Plan: Find the general solution, then extract the steady-state solution by dropping negative exponential
terms. The computation can use initial data I(0) = I ′(0) = 0, because every particular solution contains the
terms of the steady-state solution. Some details:

(s2 + 2s+ 5)L(I) =
−10

s2 + 1

L(I) =
−10

(s2 + 1)(s2 + 2s+ 5)

L(I) =
−10

(s2 + 1)((s+ 1)2 + 4)

L(I) =
s− 2

s2 + 1
− s

(s+ 1)2 + 4

L(I) =
s

s2 + 1
− 2

1

s2 + 1
− s+ 1

(s+ 1)2 + 4
+

1

2

2

(s+ 1)2 + 4

L(I) = L(cos t)− 2L(sin t)− L(e−t cos 2t) +
1

2
L(e−t sin 2t)

I(t) = cos t− 2 sin t− e−t cos 2t+
1

2
e−t sin 2t, by Lerch’s Theorem.



Dropping the negative exponential terms gives the steady-state solution Iss(t) = cos t− 2 sin t.

Part (b) Answer: yp =
x2

2
− x3

6
.

Variation of Parameters.
Solve y′′ = 0 to get yh = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y

′
2 − y′1y2 = 1.

Then for f(t) = 1− x,

yp = y1

∫
y2
−f
W

dx+ y2

∫
y1
f

W
dx,

yp = 1

∫
−x(1− x)dx+ x

∫
1(1− x)dx,

yp = −1(x2/2− x3/3) + x(x− x2/2),
yp = x2/2− x3/6.
This answer is checked by quadrature, applied twice to y′′ = 1− x with initial conditions zero.

2. (Laplace Theory)

(a) [40%] Assume f(t) is of exponential order. Find f(t) in the relation

d2

ds2
L(f(t))

∣∣∣∣∣
s→(s−3)

=
1

s2
+ L(t2f(t)− t).

(b) [60%] Solve by Laplace’s method x′′ + 2x′ + x = e−t, x(0) = x′(0) = 0.

Answer:
(a)
x (t) = −1/4 e−t − 1/2 e−tt+ 1/4 et

An intermediate step is L(x(t)) =
1

(s− 1)(s+ 1)2
. The solution uses partial fractions

1

(s− 1)(s+ 1)2
=

A

s− 1
+

B

s+ 1
+

C

(s+ 1)2
, with answers A = 1/4, B = −1/4, C = −1/2.

(b)
Replace by the shift theorem and the s-differentiation theorem the given equation by

L
(
(−t)f(t)e3t

)
= L(f(t)− t).

Then Lerch’s theorem cancels L to give −te3tf(t) = f(t)− t. Solve for

f(t) =
t

1 + te3t
.

(c)
The main steps are:
(s2 + 4s+ 4)L(y(t)) = L(f(t)),

L(y(t)) =
1

(s+ 2)2
L(f(t)),

L(y(t)) = L(te−2t)L(f(t)), by the first shifting theorem,
L(y(t)) = L(convolution of te−2t and f(t)), by the Convolution Theorem,

L(y(t)) = L
(∫ t

0
xe−2xf(t− x)dx

)
, insert definition of convolution,

y(t) =

∫ t

0
xe−2xf(t− x)dx, by Lerch’s Theorem.



3. (Laplace Theory)

(a) [30%] Solve L(f(t)) =
10/s

(s2 + 1)(s2 + 5)
for f(t).

(b) [30%] Solve x′′′ + x′ = 0, x(0) = 1, x′(0) = 1, x′′(0) = 0 by Laplace’s Method.

(c) [40%] Solve the system x′ = 4x+ y+ 30, y′ = x+ 4y+ 60, x(0) = 0, y(0) = 0 by Laplace’s Method.

Answer:
(4a) Laplace’s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+ 2)L(x) = 1 + L(et).

The forward Laplace table applies to evaluate L(et). Then write, after a division, the isolated formula for
L(x):

L(x) =
1 + 1/(s− 1)

s+ 2
=

s

(s− 1)(s+ 2)
.

Partial fraction methods plus the backward Laplace table imply

L(x) =
a

s− 1
+

b

s+ 2
= L(aet + be−2t)

and then x(t) = aet + be−2t by Lerch’s theorem. The constants are a = 1/3, b = 2/3.

(4b) L(f) = 100
(u+1)(u+4) = 100/3

u+1 + −100/3
u+4 where u = s2. Then L(f) = 100

3 ( 1
s2+1

− 1
s2+4

) = 100
3 L(sin t −

1
2 sin 2t) implies f(t) = 100

3 (sin t− 1
2 sin 2t).

(4c) L(f) = a
s + b

s2
+ c

s+3 = L(a+ bt+ ce−3t) implies f(t) = a+ bt+ ce−3t. The constants, by Heaviside
coverup, are a = −1/9, b = 1/3, c = 1/9.
(4d) L(f) = d

dsL(e2t sin 3t) by the s-differentiation theorem. The first shifting theorem implies L(e2t sin 3t) =

L(sin 3t)|s→(s−2). Finally, the forward table implies L(f) =
d

ds

(
1

(s− 2)2 + 9

)
=

−2(s− 2)

((s− 2)2 + 9)2
.

(4e) The answer is x(t) = 1, by guessing, then checking the answer. The Laplace details jump through hoops
to arrive at (s3 + s2)L(x(t)) = s2 + s, or simply L(x(t)) = 1/s. Then x(t) = 1.
(4f) The transformed system is

(s− 1)L(x) + (−1)L(y) = 0,
(−1)L(x) + (s+ 1)L(y) = L(2).

Then L(2) = 2/s and Cramer’s Rule gives the formulas

L(x) =
2

s(s2 − 2)
, L(y) =

2(s− 1)

s(s2 − 2)
.

After partial fractions and the backward table,

x = −1 + cosh(
√

2t), y =
√

2 sinh(
√

2t)− cosh(
√

2t) + 1.

4. (Systems of Differential Equations)

The Eigenanalysis Method (section 5.2) says that, for a 3× 3 system d
dt~u = A~u, the general solution is



~u(t) = c1v1e
λ1t + c2v2e

λ2t + c3v3e
λ3t. In the solution formula, (λ1,v1), (λ2,v2), (λ3,v3) are eigenpairs

of A. Assume given the 3× 3 matrix

A =

 4 1 1
1 4 1
0 0 5

 .
(a) [50%] Matrix A has only two eigenpairs. Display eigenanalysis details for A.
(b) [25%] It is impossible to apply the Eigenanalysis Method (stated above). Explain why.
(c) [25%] Display the solution of d

dt~u = A~u in case A is 4 × 4 and has eigenvalues 2,−1, 3, 5 with
corresponding eigenvectors 

1
1
−1

0

 ,


1
1
1
0

 ,


0
1
−1

0

 ,


0
−1

0
1

 .

Answer:
(a): The details should solve the equation |A − λI| = 0 for three values λ = 5, 4, 3. Then solve the three
systems (A− λI)~v = ~0 for eigenvector ~v, for λ = 5, 4, 3.
The eigenpairs are

5,

 1
1
0

 ; 4,

 −1
−1

1

 ; 3,

 1
−1

0

 .
(b): The eigenanalysis method implies

x(t) = c1e
5t

 1
1
0

+ c2e
4t

 −1
−1

1

+ c3e
3t

 1
−1

0

 .
(c): The eigenpairs are

6,

 1
1
0

 ; 7,

 1
1
1

 ; 4,

 1
−1

0

 .
and The eigenanalysis method implies

x(t) = c1e
6t

 1
1
0

+ c2e
7t

 1
1
1

+ c3e
4t

 1
−1

0

 .

5. (Systems of Differential Equations)

Systems d
dt~u = A~u with A an n× n real matrix can be solved by the following methods:

(1) Cayley-Hamilton-Ziebur method, from section 4.2. (2) Eigenanalysis method from 5.2. (3) Laplace’s
method, from chapter 7. (4) Exponential matrix, from 5.6

(a) [50%] The eigenvalues are 3, 5 for the matrix A =

[
5 1
1 5

]
. Display the general solution of d

dt~u = A~u

according to the Cayley-Hamilton-Ziebur shortcut (textbook chapters 4,5).

(b) [10%] The 3× 3 system d
dt~u = A~u is supplied with matrix A having only two eigenpairs. It can be

solved using the exponential matrix. What other methods are possible to use? Don’t do any details,
write a sentence.



(c) [10%] The 3× 3 system d
dt~u = A~u is supplied with matrix A having three eigenpairs, but only one

real eigenvalue. It can be solved using the exponential matrix. What other methods are possible to use?
Don’t do any details, write a sentence.

(d) [30%] The 3× 3 system d
dt~u = A~u is given by A =

 1 0 1
0 1 1
0 0 0

. Choose a method other than the

exponential matrix and explain how you would solve for ~u. It is not necessary to find the answer, but
it is necessary to outline the method, not omitting any details.

Answer:
(a) Cayley-Hamilton Ziebur Shortcut. The method says that the components x(t), y(t) of the solution
to the system

d

dt
~u = A~u, ~u(0) =

(
1
−1

)

with A =

(
4 1
1 4

)
and ~u =

(
x(t)
y(t)

)
are linear combinations of the Euler atoms found from the roots

of the characteristic equation |A − rI| = 0. The roots are r = 3, 5 and the atoms are e3t, e5t. The scalar
system is 

x′(t) = 4x(t) + y(t),
y′(t) = x(t) + 4y(t),
x(0) = 1,
y(0) = −1.

The C-H-Z method implies x(t) = c1e
3t+c2e

5t, but c1, c2 are not arbitrary constants: they are determined by
the initial conditions x(0) = 1, y(0) = −1. Then x′ = 4x+y can be solved for y to obtain y(t) = x′(t)−4x(t).
Substitute expression x(t) = c1e

3t + c2e
5t into y(t) = x′(t)− 4x(t) to obtain

y(t) = x′(t)− 4x(t) = 3c1e
3t + 5c2e

5t − 4(c1e
3t + c2e

5t) = −c1e3t + c2e
5t.

Then {
x(t) = c1e

3t + c2e
5t,

y(t) = −c1e3t + c2e
5t.

(1)

Initial data x(0) = 1, y(0) = −1 are used in the last step, to evaluate c1, c2. Inserting these conditions
produces a 2× 2 linear system for c1, c2{

0 = c1e
0 + c2e

0,
0 = −c1e0 + c2e

0.

The solution is c1 = 1 and c2 = 0, which implies the final answer x(t) = e3t, y(t) = −e3t.

Remark on Fundamental Matrices. The answer prior to evaluation of c1, c2 can be written as(
x(t)
y(t)

)
=

(
e3t e5t

−e3t e5t

)(
c1
c2

)
.

The matrix Φ(t) =

(
e3t e5t

−e3t e5t

)
is called a fundamental matrix, because it is nonsingular and satisfies

Φ′ = AΦ (its columns are solutions of d
dt~u = A~u). In terms of Φ,

eAt = Φ(t)Φ−1(0).



This formula gives an alternative way to compute eAt by using the Cayley-Hamilton-Ziebur shortcut. Please
observe that the columns of Φ are the formal partial derivatives of the vector solution ~u on the symbols
c1, c2. Partial derivatives on symbols is a general method for discovering basis vectors. Therefore, Φ can be
written directly from equations (??).


