
Differential Equations 2280
Sample Midterm Exam 2 with Solutions
Exam Date: 30 March 2018 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4. Problems below cover the possibilities, but the exam day
content will be much less, as was the case for Exam 1.

1. (Chapter 3)

(a) [50%] Find by any applicable method the steady-state periodic solution for the current equation
I ′′ + 2I ′ + 5I = −10 sin(t).
(b) [50%] Find by variation of parameters a particular solution yp for the equation y′′ = 1−x. Show all
steps in variation of parameters. Check the answer by quadrature.

Answer:
Part (a) Answer: Iss(t) = cos t− 2 sin t.

Variation of Parameters.
This is the same problem as x′′ + 2x′ + 5x = −10 sin(t).
Solve x′′ + 2x′ + 5x = 0 to get xh = c1x1 + c2x2, x1 = e−t cos 2t, x2 = e−t sin 2t. Compute the
Wronskian W = x1x

′
2 − x′1x2 = 4e−2t. Then for f(t) = −10 sin(t),

xp = x1

∫
x2
−f
W

dt+ x2

∫
x1

f

W
dt.

The integrations are too difficult, so the method won’t be pursued.
Undetermined Coefficients.
The trial solution by Rule I is I = d1 cos t+d2 sin t. The homogeneous solutions have exponential
factors, therefore the Euler solution atoms in the trial solution cannot be solutions of the homo-
geneous problem, hence Rule II does not apply.
Substitute the trial solution into the non-homogeneous equation to obtain the answers d1 = 1,
d2 = −2. The unique periodic solution Iss is extracted from the general solution I = Ih + Ip
by crossing out all negative exponential terms (terms which limit to zero at infinity). Because
Ip = d1 cos t+d2 sin t = cos t− 2 sin t and the homogeneous solution xh has negative exponential
terms, then

Iss = cos t− 2 sin t.

Laplace Theory.
Plan: Find the general solution, then extract the steady-state solution by dropping negative ex-
ponential terms. The computation can use initial data I(0) = I ′(0) = 0, because every particular
solution contains the terms of the steady-state solution. Some details:

(s2 + 2s+ 5)L(I) =
−10

s2 + 1

L(I) =
−10

(s2 + 1)(s2 + 2s+ 5)

L(I) =
−10

(s2 + 1)((s+ 1)2 + 4)

L(I) =
s− 2

s2 + 1
− s

(s+ 1)2 + 4

L(I) =
s

s2 + 1
− 2

1

s2 + 1
− s+ 1

(s+ 1)2 + 4
+

1

2

2

(s+ 1)2 + 4

L(I) = L(cos t)− 2L(sin t)− L(e−t cos 2t) +
1

2
L(e−t sin 2t)



I(t) = cos t− 2 sin t− e−t cos 2t+
1

2
e−t sin 2t, by Lerch’s Theorem.

Dropping the negative exponential terms gives the steady-state solution Iss(t) = cos t− 2 sin t.

Part (b) Answer: yp =
x2

2
− x3

6
.

Variation of Parameters.
Solve y′′ = 0 to get yh = c1y1+c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y

′
2−y′1y2 =

1. Then for f(t) = 1− x,

yp = y1

∫
y2
−f
W

dx+ y2

∫
y1
f

W
dx,

yp = 1

∫
−x(1− x)dx+ x

∫
1(1− x)dx,

yp = −1(x2/2− x3/3) + x(x− x2/2),
yp = x2/2− x3/6.
This answer is checked by quadrature, applied twice to y′′ = 1− x with initial conditions zero.

2. (Chapters 1, 2, 3)

(2a) [20%] Solve 2v′(t) = −8 +
2

2t+ 1
v(t), v(0) = −4. Show all integrating factor steps.

(2b) [10%] Solve for the general solution: y′′ + 4y′ + 6y = 0.

(2c) [10%] Solve for the general solution of the homogeneous constant-coefficient differential equation
whose characteristic equation is r(r2 + r)2(r2 + 9)2 = 0.

(2d) [20%] Find a linear homogeneous constant coefficient differential equation of lowest order which
has a particular solution y = x+ sin

√
2x+ e−x cos 3x.

(2e) [15%] A particular solution of the equation mx′′ + cx′ + kx = F0 cos(2t) happens to be x(t) =
11 cos 2t+ e−t sin

√
11t−

√
11 sin 2t. Assume m, c, k all positive. Find the unique periodic steady-state

solution xss.

(2f) [25%] Determine for y′′′ + y′′ = 100x2 + sinx the shortest trial solution for yp according to the
method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Answer:
(2a) v(t) = −4− 8t
(2b) r2 + 4r + 6 = 0, y = c1y1 + c2y2, y1 = e−2x cos

√
2x, y2 = e−2x sin

√
2x.

(2c) Write as r3(r + 1)2(r2 + 9)2 = 0. Then y is a linear combination of the atoms 1, x, x2, e−x, xe−x,
cos 3x, x cos 3x, sin 3x, x sin 3x.
(2d) The atoms that appear in y(x) are x, sin

√
2x, e−x cos 3x. Derivatives of these atoms create a longer list:

1, x, cos
√

2x, sin
√

2x, e−x cos 3x, e−x sin 3x. These atoms correspond to characteristic equation roots 0, 0;√
2i, −

√
2i, −1 + 3i, −1− 3i. Then the characteristic equation has factors r, r; x2 + 2; ((r+ 1)2 + 9). The

product of these factors is the correct characteristic equation, which corresponds to the differential equation
of least order such that y(x) is a solution. Report r6 + 2r5 + 12r4 + 4r3 + 20r2 = 0 as the characteristic
equation or y(6) + 2y(5) + 12y(4) + 4y′′′ + 20y′′ = 0 as the differential equation.
(2e) It has to equal the terms left over after striking out the transient terms, those terms with limit zero at
infinity. Then xss(t) = 11 cos 2t−

√
11 sin 2t.

(2f) The homogeneous solution is a linear combination of the atoms 1, x, e−x because the characteristic
polynomial has roots 0, 0, −1.
Rule 1 An initial trial solution y is constructed for atoms 1, x, x2, cosx, sinx giving 3 groups, each



group having the same base atom:
y = y1 + y2 + y3,
y1 = d1 + d2x+ d3x

2,
y2 = d4 cosx,
y3 = d5 sinx.

Linear combinations of the listed independent atoms are supposed to reproduce, by specialization of constants,
all derivatives of the right side of the differential equation.
Rule 2 The correction rule is applied individually to each of y1, y2, y3.
Multiplication by x is done repeatedly, until the replacement atoms do not appear in atom list for the
homogeneous differential equation. The result is the shortest trial solution

y = y1 + y2 + y3 = (d1x
2 + d2x

3 + d3x
4) + (d4 cosx) + (d5 sinx).

Some facts: (1) If an Euler solution atom of the homogeneous equation appears in a group, then it is removed
because of x-multiplication, but replaced by a new atom having the same base atom. (2) The number of
terms in each of y1 to y3 is unchanged from Rule I to Rule II.

3. (Laplace Theory)

(a) [50%] Solve by Laplace’s method x′′ + 2x′ + x = et, x(0) = x′(0) = 0.

(b) [25%] Assume f(t) is of exponential order. Find f(t) in the relation

d

ds
L(f(t))

∣∣∣∣
s→(s−3)

= L(f(t)− t).

(c) [25%] Derive an integral formula for y(t) by Laplace transform methods, explicitly using the Con-
volution Theorem, for the problem

y′′(t) + 4y′(t) + 4y(t) = f(t), y(0) = y′(0) = 0.

This is similar to a required homework problem from Chapter 7.

Answer:
(a)
x (t) = −1/4 e−t − 1/2 e−tt+ 1/4 et

An intermediate step is L(x(t)) =
1

(s− 1)(s+ 1)2
. The solution uses partial fractions

1

(s− 1)(s+ 1)2
=

A

s− 1
+

B

s+ 1
+

C

(s+ 1)2
, with answers A = 1/4, B = −1/4, C = −1/2.

(b)
Replace by the shift theorem and the s-differentiation theorem the given equation by

L
(
(−t)f(t)e3t

)
= L(f(t)− t).

Then Lerch’s theorem cancels L to give −te3tf(t) = f(t)− t. Solve for

f(t) =
t

1 + te3t
.

(c)
The main steps are:



(s2 + 4s+ 4)L(y(t)) = L(f(t)),

L(y(t)) =
1

(s+ 2)2
L(f(t)),

L(y(t)) = L(te−2t)L(f(t)), by the first shifting theorem,
L(y(t)) = L(convolution of te−2t and f(t)), by the Convolution Theorem,

L(y(t)) = L
(∫ t

0
xe−2xf(t− x)dx

)
, insert definition of convolution,

y(t) =

∫ t

0
xe−2xf(t− x)dx, by Lerch’s Theorem.

4. (Laplace Theory)

(4a) [20%] Explain Laplace’s Method, as applied to the differential equation x′(t)+2x(t) = et, x(0) = 1.
Reference only. Not to appear on any exam.

(4b) [15%] Solve L(f(t)) =
100

(s2 + 1)(s2 + 4)
for f(t).

(4c) [15%] Solve for f(t) in the equation L(f(t)) =
1

s2(s+ 3)
.

(4d) [10%] Find L(f) given f(t) = (−t)e2t sin(3t).

(4e) [20%] Solve x′′′ + x′′ = 0, x(0) = 1, x′(0) = 0, x′′(0) = 0 by Laplace’s Method.

(4f) [20%] Solve the system x′ = x+ y, y′ = x− y + 2, x(0) = 0, y(0) = 0 by Laplace’s Method.

Answer:
(4a) Laplace’s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+ 2)L(x) = 1 + L(et).

The forward Laplace table applies to evaluate L(et). Then write, after a division, the isolated formula for
L(x):

L(x) =
1 + 1/(s− 1)

s+ 2
=

s

(s− 1)(s+ 2)
.

Partial fraction methods plus the backward Laplace table imply

L(x) =
a

s− 1
+

b

s+ 2
= L(aet + be−2t)

and then x(t) = aet + be−2t by Lerch’s theorem. The constants are a = 1/3, b = 2/3.

(4b) L(f) = 100
(u+1)(u+4) = 100/3

u+1 + −100/3
u+4 where u = s2. Then L(f) = 100

3 ( 1
s2+1

− 1
s2+4

) = 100
3 L(sin t −

1
2 sin 2t) implies f(t) = 100

3 (sin t− 1
2 sin 2t).

(4c) L(f) = a
s + b

s2
+ c

s+3 = L(a+ bt+ ce−3t) implies f(t) = a+ bt+ ce−3t. The constants, by Heaviside
coverup, are a = −1/9, b = 1/3, c = 1/9.
(4d) L(f) = d

dsL(e2t sin 3t) by the s-differentiation theorem. The first shifting theorem implies L(e2t sin 3t) =

L(sin 3t)|s→(s−2). Finally, the forward table implies L(f) =
d

ds

(
1

(s− 2)2 + 9

)
=

−2(s− 2)

((s− 2)2 + 9)2
.

(4e) The answer is x(t) = 1, by guessing, then checking the answer. The Laplace details jump through hoops
to arrive at (s3 + s2)L(x(t)) = s2 + s, or simply L(x(t)) = 1/s. Then x(t) = 1.
(4f) The transformed system is

(s− 1)L(x) + (−1)L(y) = 0,
(−1)L(x) + (s+ 1)L(y) = L(2).



Then L(2) = 2/s and Cramer’s Rule gives the formulas

L(x) =
2

s(s2 − 2)
, L(y) =

2(s− 1)

s(s2 − 2)
.

After partial fractions and the backward table,

x = −1 + cosh(
√

2t), y =
√

2 sinh(
√

2t)− cosh(
√

2t) + 1.

5. (Laplace Theory)

(a) [30%] Solve L(f(t)) =
1

(s2 + s)(s2 − s)
for f(t).

(b) [20%] Solve for f(t) in the equation L(f(t)) =
s+ 1

s2 + 4s+ 5
.

(c) [20%] Let u(t) denote the unit step. Solve for f(t) in the relation

L(f(t)) =
d

ds
L(u(t− 1) sin 2t)

Remark: This is not a second shifting theorem problem.
(d) [30%] Compute L(e2tf(t)) for

f(t) =
et − e−t

t
.

Answer:
(a) f(t) = sinh(t)− t = 1

2e
t − 1

2e
−t − t

(b) f(t) = e−2t(cos(t)− sin(t))
(c) Replace d/ds by factor (−t) in the Laplace integrand:

L(f(t)) = L((−t) sin(2t)u(t− 1))

Apply Lerch’s theorem to cancel L on each side, obtaining the answer

f(t)) = (−t) sin(2t)u(t− 1).

(d) The first shifting theorem reduces the problem to computing L(f(t)).

L(tf(t)) = L(et − e−t) =
1

s− 1
− 1

s+ 1

− d

ds
L(f(t)) =

1

s− 1
− 1

s+ 1
, by the s-differentiation theorem,

Then F (s) = L(f(t)) satisfies a first order quadrature equation F ′(s) = h(s) with solution F (s) = ln |s +

1|− ln |s−1|+c = ln
∣∣∣ s+1
s−1

∣∣∣+c for some constant c. Because F = 0 at s =∞ (a basic theorem for functions

of exponential order) and ln |1| = 0, then c = 0 and L(f(t)) = F (s) = ln |s + 1| − ln |s − 1| = ln
∣∣∣ s+1
s−1

∣∣∣.
Then the shifting theorem implies

L
(
e2tf(t)

)
= L(f(t))|s:=s−2 = ln

∣∣∣∣s− 1

s− 3

∣∣∣∣ .



6. (Systems of Differential Equations)

The eigenanalysis method says that, for a 3×3 system x′ = Ax, the general solution is x(t) = c1v1e
λ1t+

c2v2e
λ2t + c3v3e

λ3t. In the solution formula, (λi,vi), i = 1, 2, 3, is an eigenpair of A. Given

A =

 4 1 1
1 4 1
0 0 4

 ,
then
(a) [75%] Display eigenanalysis details for A.
(b) [25%] Display the solution x(t) of x′(t) = Ax(t).

(c) Repeat (a), (b) for the matrix A =

 5 1 1
1 5 1
0 0 7

.

Answer:
(a): The details should solve the equation |A − λI| = 0 for three values λ = 5, 4, 3. Then solve the three
systems (A− λI)~v = ~0 for eigenvector ~v, for λ = 5, 4, 3.
The eigenpairs are

5,

 1
1
0

 ; 4,

 −1
−1

1

 ; 3,

 1
−1

0

 .
(b): The eigenanalysis method implies

x(t) = c1e
5t

 1
1
0

+ c2e
4t

 −1
−1

1

+ c3e
3t

 1
−1

0

 .
(c): The eigenpairs are

6,

 1
1
0

 ; 7,

 1
1
1

 ; 4,

 1
−1

0

 .
and the eigenanalysis method implies

x(t) = c1e
6t

 1
1
0

+ c2e
7t

 1
1
1

+ c3e
4t

 1
−1

0

 .

7. (Systems of Differential Equations)

(a) [30%] Find the eigenvalues of the matrix A =


4 1 −1 0
1 4 −2 1
0 0 2 0
0 0 2 4

.

(b) [20%] Justify that eigenvectors of A corresponding to the eigenvalues in increasing order are the four
vectors 

1
−5
−3

3

 ,

−1

1
0
0

 ,

−1

0
0
1

 ,


1
1
0
0

 .



(c) [50%] Display the general solution of u′ = Au according to the Eigenanalysis method.

Answer:
(a) Eigenvalues are λ = 2, 3, 4, 5.
Define

A =


4 1 −1 0
1 4 −2 1
0 0 2 0
0 0 2 4

 .
Subtract λ from the diagonal elements of A and expand the determinant det(A − λI) to obtain the char-
acteristic polynomial (2 − λ)(3 − λ)(4 − λ)(5 − λ) = 0. The eigenvalues are the roots: λ = 2, 3, 4, 5.
Used here was the cofactor rule for determinants. Also possible is the special result for block matrices,∣∣∣∣∣ B1 0
C B2

∣∣∣∣∣ = |B1||B2|. Sarrus’ rule does not apply for 4× 4 determinants (an error) and the triangular rule

likewise does not directly apply (another error).
(b) To be justified is AP = PD where D = diag(2, 3, 4, 5) is the diagonal matrix of eigenvalues (see part
(a)) and P is the augmented matrix of eigenvectors supplied above. Matrix multiply can check the answer,
by expanding each side of AP = PD.
Alternative method:
Solve (A − λI)~v = ~0 four times, for λ = 2, 3, 4, 5. Each is a homogeneous system of linear algebraic equa-
tions, reduced to RREF by swap, combo, multiply. Each eigenvector answer is Strang’s Special Solution.
(c) Because the eigenvalues are λ = 2, 3, 4, 5, then the solution is a vector linear combination of the Euler
solution atoms e2t, e3t, e4t, e5t:

u(t) = ~d1e
2t + ~d2e

3t + ~d3e
4t + ~d4e

5t.

According to the theory, ~dj = cj~vj , where (λ1, ~v1), . . . , (λ4, ~v4) are the eigenpairs of A and c1, c2, c3, c4 are
invented symbols representing real, arbitrary constants. Then

~u = c1e
2t


1
−5
−3

3

+ c2e
3t


−1

1
0
0

+ c3e
4t


−1

0
0
1

+ c4e
5t


1
1
0
0

 .

8. (Systems of Differential Equations)

(a) [100%] The eigenvalues are 3, 5 for the matrix A =

[
4 1
1 4

]
.

Display the general solution of u′ = Au according to the Cayley-Hamilton-Ziebur shortcut (textbook

chapters 4,5). Assume initial condition ~u0 =

(
1
−1

)
.

Answer:
(a) Cayley-Hamilton Ziebur Shortcut. The method says that the components x(t), y(t) of the solution
to the system

~u′ = A~u, ~u(0) =

(
1
−1

)



with A =

(
4 1
1 4

)
and ~u =

(
x(t)
y(t)

)
are linear combinations of the Euler atoms found from the roots

of the characteristic equation |A − rI| = 0. The roots are r = 3, 5 and the atoms are e3t, e5t. The scalar
system is 

x′(t) = 4x(t) + y(t),
y′(t) = x(t) + 4y(t),
x(0) = 1,
y(0) = −1.

The C-H-Z method implies x(t) = c1e
3t+c2e

5t, but c1, c2 are not arbitrary constants: they are determined by
the initial conditions x(0) = 1, y(0) = −1. Then x′ = 4x+y can be solved for y to obtain y(t) = x′(t)−4x(t).
Substitute expression x(t) = c1e

3t + c2e
5t into y(t) = x′(t)− 4x(t) to obtain

y(t) = x′(t)− 4x(t) = 3c1e
3t + 5c2e

5t − 4(c1e
3t + c2e

5t) = −c1e3t + c2e
5t.

Then {
x(t) = c1e

3t + c2e
5t,

y(t) = −c1e3t + c2e
5t.

(1)

Initial data x(0) = 1, y(0) = −1 are used in the last step, to evaluate c1, c2. Inserting these conditions
produces a 2× 2 linear system for c1, c2{

1 = c1e
0 + c2e

0,
−1 = −c1e0 + c2e

0.

The solution is c1 = 1 and c2 = 0, which implies the final answer x(t) = e3t, y(t) = −e3t.

Remark on Fundamental Matrices. The answer prior to evaluation of c1, c2 can be written as(
x(t)
y(t)

)
=

(
e3t e5t

−e3t e5t

)(
c1
c2

)
.

The matrix Φ(t) =

(
e3t e5t

−e3t e5t

)
is called a fundamental matrix, because it is nonsingular and satisfies

Φ′ = AΦ (its columns are solutions of ~u′ = A~u). In terms of Φ,

eAt = Φ(t)Φ−1(0).

This formula gives an alternative way to compute eAt by using the Cayley-Hamilton-Ziebur shortcut. Please
observe that the columns of Φ are the formal partial derivatives of the vector solution ~u on the symbols
c1, c2. Partial derivatives on symbols is a general method for discovering basis vectors. Therefore, Φ can be
written directly from equations (1).


