Differential Equations 2280 Midterm Exam 2 Review: Problems Only Exam Date: 30 March 2018 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Chapter 3)

- (a) [60%] Find by any applicable method the steady-state periodic solution.
- (b) [40%] Variation of parameters: electrical/mechanical system.

Expected in (b): (1) Characteristic equation and Euler atoms. (2) Wronskian, (3) Explicit formula for y_h . (4) Integral formula for y_p , simplified as much as possible, integrals unevaluated.

2. (Laplace Theory)

(a) [50%] Assume f(t) is of exponential order. Find f(t) in the given relation.

(b) [50%] Solve by Laplace's method: second order forced spring-mass system with initial conditions.

3. (Laplace Theory)

(a) [40%] Solve a linear third order homogeneous differential equation by Laplace's Method.

Expected in (a): (1) Laplace's method steps to find $\mathcal{L}(x(t))$, (2) Backward table steps to find x(t), (3) An answer check.

(b) [60%] Solve a 2 × 2 system of non-homogeneous linear differential equations by Laplace's Method.

Expected in (b): (1) Laplace's method steps to find a system of linear algebraic equations for $\mathcal{L}(x(t))$ and $\mathcal{L}(y(t))$. (2) Cramer's Rule steps to find $\mathcal{L}(x(t))$ and $\mathcal{L}(y(t))$. (3) Backward Laplace table steps to find x(t), y(t). (4) Check the answer for sanity, e.g., compute the Euler atoms.

4. (Systems of Differential Equations)

The Eigenanalysis Method (section 5.2) says that, for a 3×3 system $\frac{d}{dt}\vec{u}(t) = A\vec{u}(t)$, the general solution is $\vec{u}(t) = c_1\vec{v}_1e^{\lambda_1t} + c_2\vec{v}_2e^{\lambda_2t} + c_3\vec{v}_3e^{\lambda_3t}$. In the solution formula, $(\lambda_1, \vec{v}_1), (\lambda_2, \vec{v}_2), (\lambda_3, \vec{v}_3)$ are eigenpairs of A. Assume given the two 3×3 matrices

$$A = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}, \qquad B = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}.$$

(a) [50%] Matrix A has only two eigenpairs. Display eigenanalysis details for A. Then explain method failures in methods (1) to (4).

(b) [50%] Find by any method the general solution of $\frac{d}{dt}\vec{u}(t) = B\vec{u}(t)$.

5. (Systems of Differential Equations)

A system $\frac{d}{dt}\vec{u} = A\vec{u}$ with A an $n \times n$ real matrix can be solved by many methods. Consider below **only** these possibilities:

(1) Cayley-Hamilton-Ziebur method, from section 4.2. (2) Eigenanalysis method from section 5.2. (3) Laplace's method, from chapter 7. (4) First order linear integrating factor method from section 1.5.

(a) [20%] Given an example system, which of methods (1), (3), (4) might be possible to use? Don't do any details or illustrations: kindly write a sentence and explain your logic.

(b) [40%] Solve for the general solution by the Cayley-Hamilton-Ziebur shortcut (chapters 4 and 5):

$$\frac{d}{dt}\vec{u} = B\vec{u}, \qquad B = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$
 (eigenvalues = *, *).

(c) [40%] Choose any method applicable and solve for the general solution of system

$$\begin{cases} x'(t) &= *x(t) + *y(t) + *z(t), \\ y'(t) &= *x(t) + *y(t) + *z(t), \\ z'(t) &= *x(t) + *y(t) + *z(t). \end{cases}$$