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Applied Differential Equations

A Course for Science and Engineering

Organization. Each chapter of the text is organized in sections that
represent one or two classroom lectures of 50 minutes each. The outside
work for these divisions requires one to six hours, depending upon the depth
of study.

Each section within a chapter consists of three distinct parts. The divi-
sions represent the lecture, examples and technical details. Generally,
proofs of theorems or long justifications of formulas are delayed until after
the examples. The lectures contain only the briefest examples, figures and
illustrations.

A key to a successful course is a weekly session dedicated to review, drill,
answers, solutions, exposition and exam preparation. While group meetings
are important, individual effort is required to flesh out the details and to
learn the subject in depth. The textbook design supports targeted self-study
through its examples and exercises.

There is a defense for this style of presentation, matched equally by a long
list of criticisms. The defense is that this style represents how material is
presented in classroom lectures, and how the topics are studied in the private
life of a student. Certainly, students don't read everything in the textbook,
and this style addresses the issue of what to skip and what to read in detail.
The criticisms include a departure from standard textbooks, which intermix
theory and examples and proofs. Additional criticisms include a general need
to flip pages to look up details.

Prerequisites. Beginning sections of chapters require college algebra,
basic high school geometry, coordinate geometry, elementary trigonometry,
differential calculus and integral calculus. Several variable calculus and linear
algebra are assumed for certain advanced topics. Instructors are the best
judges of what to include and what to skip, concerning advanced topics in
this textbook.

Survey course. A complete survey course in differential equations for
engineering and science can be constructed from the lectures and examples,
by skipping the technical details supplied in the text. Interested students
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can read the details to obtain a deeper introduction to the subject. Such
survey courses will necessarily contact more chapters and trade the depth of
a conventional course for a faster pace, easier topics, and more variety.

Conventional Course. Differential equations courses at the under-
graduate level will present some or all of the technical details in class, as
part of the lecture. Deeper study with technical details is warranted for spe-
cialties like physics and electrical engineering. Hybrid courses that combine
the conventional course and the engineering course can be realized.

To the Student. Expertise in the background topics is expected of
students only after review and continued use in the course, especially by
writing solutions to exercises. Instructors are advised that an exercise list
and subsequent evaluation of the work is essential for successful use of the
text.

Matched in the text are examples, exercises and odd answers. To learn the
subject, not only is it required to solve exercises, but to write exercises,
which is not different from writing in a foreign language.

Writing requires two or more drafts and a final report or presentation. En-
gineering paper and lineless duplicator paper encourage final reports with
adequate white space between equations. Pencil and eraser save time. Pens
and word processors waste time.

Contributions to legibility, organization and presentation of hand-written
exercises were made at The University of Utah, by numerous creative en-
gineering students, over the years 1990-2016. Their ideas produced the
suggestions below, which were applied to the text examples and illustra-
tions.

1. A report is hand-written by pencil on printer paper or engineering
paper. It starts with a problem statement followed perhaps by a final
answer summary. Supporting material appears at the end, like a tax
return.

2. Mathematical notation is on the left, text on the right, often a 60%
to 40% ratio. One equal sign per line. Justify equations left or align
on the equal signs. Vertical white space separates equation displays.

3. Text is left-justified on the right side. It includes explanations, refer-
ences by keyword or page number, statements and definitions, refer-
ences to delayed details (long calculations, graphics, answer checks).

4. Every report has an answer check. It is usual to see back of book
as the only detail. Proofs have no answer check.

5. No suggestion is a rule: invent your own style by theft of good ideas
and rejection of unsuitable ideas.



CONTENTS iii

Work and School. Students studying in isolation are increasing in
number, because their jobs and family drive their university schedules. In
spite of their forced isolation from the classroom, working students with
families seek advice from their instructors by telephone, email and office
visits. They make use of study groups and supplemental instruction. Course
design in universities has evolved to recognize the shift from a predominantly
non-working student population to its present constituency.
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Exercises in Progress, August 2016.
This PDF is a draft of my textbook written over the years 1999-2016.
Please, do not distribute this PDF, because it contains many errors,
as yet undiscovered.

Ch 1. Already completed 74 + 52 + 50 + 46 + 44 + 56 =
322.

Ch 2. Already completed 86 + 64 + 64 + 70 + 66 + 98 +
98 + 42 + 30 + 70 = 648.

Ch 3. Already completed 36 + 80 + 50 + 48 + 22 = 236.

Ch 4. Already completed 52 + 38 + 34 + 24 + 20 + 28 +
24 + 40 + 12 = 272.

Ch 5. Already completed 128 + 63 + 106 + 90 + 58 = 445.

Ch 6. Already completed 87 + 36 + 0 + 68 + 30 + 63 +
36 4+ 75 + 46 = 278. Need repair for missing exercises in 6.3
and 6.9

Ch 7. Already completed 30 + 14 + 20 + 8 + 16 + 51 =
139. Add 10 to 7.4.

Ch 8. Already completed 26 + 68 + 16 + 0+ 0+ 0 + 0 +
0 = 110. Add as follows: 8.3 += 40, 8.4 += 40, 8.5 += 40,
8.6 += 30, 8.7 += 30, 8.8 += 10.

Ch 9. Already completed 35 + 0 + 66 = 101. Add as follows:
9.2 4= 40. Fix blanks in 9.1, 9.3

Ch 10. Already completed 0 + 0 + 0 + 0 = 0. Add 30 to
each of 10.1, 10.2, 10.3 and 20 to 10.4.

Ch 11. Already completed 0 + 0 + 0+ 54 + 0 + 94 + 0 +
0 + 0 = 148. Add as follows: 11.1 += 30, 11.2 += 40, 11.3
+= 40, 11.4 has blanks, 11.5 += 30, 11.7 += 20, 11.8 +=
20, 11.9 += 30.

Ch 12. Already completed 0 + 0 4+ 0+ 0 + 0 + 10 + 4 +
26 = 40. Add as follows: 12.1 += 10, 12.2 += 40, 11.3 +=
30, 11.4 += 30, 11.5 += 30, 11.6 += 20, 11.7 += 20, 11.8
has blanks.

Appendix: Already completed 54 + 38 + 28 + 24 = 144.

About 2883 problems are already prepared. More to come,
about 740.
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Chapter 11

Systems of Differential

Equations

Contents

11.1 Examples of Systems . ... .. ..
11.2 Basic First-order System Methods
11.3 Structure of Linear Systems . . . .
11.4 Matrix Exponential . ... ... ..
11.5 The Eigenanalysis Method . . . . .

11.6 Jordan Form and Eigenanalysis . .

11.7 Nonhomogeneous Linear Systems

11.8 Second-order Systems . . . ... ..

11.9 Numerical Methods for Systems

Linear systems. A linear system is a system of differential equa-

tions of the form

Ty = anxi 4+ -+ az,

Th = anrr 4+ -+ G2y
(1)

513;71 = amix1 + -+ Amnly

+  f1
+ f27
+ S,

where ' = d/dt. Given are the functions a;;(t) and f;(t) on some interval

a <t < b. The unknowns are the functions x;(¢), .

oy ().

The system is called homogeneous if all f; = 0, otherwise it is called

non-homogeneous.

Matrix Notation for Systems. A non-homogeneous system of
linear equations (1) is written as the equivalent vector-matrix system

X' = AR +£(1),
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where

8
o

fi aip -+ Qin

X = : f = :
T, fn ml1 - Amn

Y Y

11.1 Examples of Systems

Brine Tank Cascade 740
Cascades and Compartment Analysis ~ ...oooeeeeennnn. 741
Recycled Brine Tank Cascade ... 742
Pond Pollution 743
Home Heating 745
Chemostats and Microorganism Culturing  ................. 747
Irregular Heartbeats and Lidocaine ... 749
Nutrient Flow in an Aquarium ... 750
Biomass Transfer 751
Pesticides in Soil and Trees ... 752
Forecasting Prices 753
Coupled Spring-Mass Systems ... 754
Boxcars 756
Monatomic Crystals 757
Electrical Network I 757
Electrical Network I 758
Logging Timber by Helicopter ... 759
Earthquake Effects on Buildings ... 760

Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 20, 40, 60, respectively, as
in Figure 1.
water

Figure 1. Three brine
tanks in cascade.
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It is supposed that fluid enters tank A at rate r, drains from A to B
at rate r, drains from B to C at rate r, then drains from tank C at
rate r. Hence the volumes of the tanks remain constant. Let » = 10, to
illustrate the ideas.

Uniform stirring of each tank is assumed, which implies uniform salt
concentration throughout each tank.

Let z1(t), x2(t), x3(t) denote the amount of salt at time ¢ in each tank.
We suppose water containing no salt is added to tank A . Therefore,
the salt in all the tanks is eventually lost from the drains. The cascade
is modeled by the chemical balance law

rate of change = input rate — output rate.

Application of the balance law, justified below in compartment analysis,
results in the triangular differential system

, 1
Ty = —ixl,
11
Ty = 5.%'1 - 1.%'2,
11
T3 = 11:2 — 6133.

The solution, to be justified later in this chapter, is given by the equations
21(t) = 21 (0)e 2,
2a(t) = =221 (0)e ™2 + (29(0) 4 221 (0))e /4,
3
z3(t) = 5 21(0)e™2 — 3(9(0) + 221 (0))e /4

+ (@5(0) ~ 2a1(0) + 3(w2(0) + 21 0)))e

Cascades and Compartment Analysis

A linear cascade is a diagram of compartments in which input and
output rates have been assigned from one or more different compart-
ments. The diagram is a succinct way to summarize and document the
various rates.

The method of compartment analysis translates the diagram into a
system of linear differential equations. The method has been used to
derive applied models in diverse topics like ecology, chemistry, heating
and cooling, kinetics, mechanics and electricity.

The method. Refer to Figure 2. A compartment diagram consists of
the following components.

Variable Names Each compartment is labelled with a variable X.
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Arrows Each arrow is labelled with a flow rate R.
Input Rate An arrowhead pointing at compartment X docu-
ments input rate R.

Output Rate An arrowhead pointing away from compartment X
documents output rate R.

0 x1/2

_— [L‘l _— 1}2

=2

2

Figure 2. Compartment
analysis diagram.

T
3 The diagram represents the
x3/6 classical brine tank problem of
Figure 1.

Assembly of the single linear differential equation for a diagram com-
partment X is done by writing dX/dt for the left side of the differential
equation and then algebraically adding the input and output rates to ob-
tain the right side of the differential equation, according to the balance

law
dXx

—— = sum of input rates — sum of output rates

dt
By convention, a compartment with no arriving arrowhead has input
zero, and a compartment with no exiting arrowhead has output zero.
Applying the balance law to Figure 2 gives one differential equation for

each of the three compartments , , .

1
/1 0 5(131,
11
Ty = 51‘1 — Z.’L‘Q,
11
Ty = 1$2 — 61’3

Recycled Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 60, 30, 60, respectively, as
in Figure 3.

A | e
B Figure 3. Three brine tanks
in cascade with recycling.

Suppose that fluid drains from tank A to B at rate r, drains from tank
B to C at rate r, then drains from tank C' to A at rate r. The tank
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volumes remain constant due to constant recycling of fluid. For purposes
of illustration, let » = 10.

Uniform stirring of each tank is assumed, which implies uniform salt

concentration throughout each tank.

Let z1(t), x2(t), x3(t) denote the amount of salt at time ¢ in each tank.
No salt is lost from the system, due to recycling. Using compartment
analysis, the recycled cascade is modeled by the non-triangular system

1
Ty = _éxl + 6.753,
) 1 1
352 = 633]_ — §x2,
) 1 1
Ty = 52 - =73

The solution is given by the equations

21(t) = 1+ (¢c2 — 2¢3)e /3 cos(t/6) + (2¢2 + ¢3)e 3 sin(t/6),

xa(t) = %cl + (—2¢2 — e3)e 3 cos(t/6) + (ca — 2¢3)e ™/ sin(t/6),

23(t) = 1 + (2 + 3e3)e ™3 cos(t/6) + (—3ca + ¢3)e™ /3 sin(t/6).

At infinity, 1 = 23 = ¢1, 2 = ¢1/2. The meaning is that the total
amount of salt is uniformly distributed in the tanks, in the ratio 2 : 1 : 2.

Pond Pollution

Consider three ponds connected by streams, as in Figure 4. The first
pond has a pollution source, which spreads via the connecting streams
to the other ponds. The plan is to determine the amount of pollutant in
each pond.

Figure 4. Three ponds 1, 2, 3
of volumes Vi, V5, V3 connected

f(t by streams. The pollution
source f(t) is in pond 1.

Assume the following.

e Symbol f(t) is the pollutant flow rate into pond 1 (Ib/min).

e Symbols f1, fa, f3 denote the pollutant flow rates out of ponds 1,
2, 3, respectively (gal/min). It is assumed that the pollutant is
well-mixed in each pond.
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e The three ponds have volumes Vi, Va, V3 (gal), which remain con-
stant.

e Symbols z1(t), x2(t), z3(t) denote the amount (1bs) of pollutant in
ponds 1, 2, 3, respectively.

The pollutant flux is the flow rate times the pollutant concentration, e.g.,
pond 1 is emptied with flux f; times x1(t)/V1. A compartment analysis
is summarized in the following diagram.

f(t) fiz1/V1
—_— T —_— T9
Figure 5. Pond diagram.
fax3/V3 The compartment diagram
fa2/ Vs represents the three-pond
L3 pollution problem of Figure 4.

The diagram plus compartment analysis gives the following differential
equations.

B = {2 ()= L)+ 100,
) = Qasl(t)—@ (o).
() = {Zmu)—@m(w.

For a specific numerical example, take f;/V; = 0.001, 1 < i < 3, and
let f(t) = 0.125 Ib/min for the first 48 hours (2880 minutes), thereafter
f(t) = 0. We expect due to uniform mixing that after a long time there
will be (0.125)(2880) = 360 pounds of pollutant uniformly deposited,
which is 120 pounds per pond.

Initially, z1(0) = x2(0) = 23(0) = 0, if the ponds were pristine. The
specialized problem for the first 48 hours is

Z\(1) = 0.001zs(t) — 0.001 21 (t) +0.125,
Zh(t) = 0.0011(t) — 0.001 za(t),

Zh(t) = 0.001za(t) — 0.001 z3(t),

x1(0) = 22(0) = z3(0) = 0.

The solution to this system is

st (12 t 12 t 12 t
a:l(t):€2800< 5\/§sin<\/g >—35cos<\/§ >>+5+

9 2000 2000 3 T ag
®) 250V s . V3t |t
LAY =g S 5000 ) T 24

_3 (125 V3t 125v/3 . [ /3t t 125
x3(t) = e 2000 | — cos + sin | — | |+ — — —.
3 2000 9 2000 24 3
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After 48 hours elapse, the approximate pollutant amounts in pounds are
x1(2880) = 162.30, x2(2880) = 119.61, x3(2880) = 78.08.

It should be remarked that the system above is altered by replacing 0.125
by zero, in order to predict the state of the ponds after 48 hours. The
corresponding homogeneous system has an equilibrium solution z1(t) =
xo(t) = x3(t) = 120. This constant solution is the limit at infinity of
the solution to the homogeneous system, using the initial values z1(0) ~
162.30, z2(0) ~ 119.61, 23(0) ~ 78.08.

Home Heating
Consider a typical home with attic, basement and insulated main floor.

Attic

Main

Floor
Figure 6. Typical home

Basement with attic and basement.
The below-grade basement
and the attic are un-insulated.
Only the main living area is
insulated.

It is usual to surround the main living area with insulation, but the attic
area has walls and ceiling without insulation. The walls and floor in the
basement are insulated by earth. The basement ceiling is insulated by
air space in the joists, a layer of flooring on the main floor and a layer
of drywall in the basement. We will analyze the changing temperatures
in the three levels using Newton’s cooling law and the variables

z(t) = Temperature in the attic,
y(t) = Temperature in the main living area,
x(t) = Temperature in the basement,

t = Time in hours.

Initial data. Assume it is winter time and the outside temperature
in constantly 35°F during the day. Also assumed is a basement earth
temperature of 45°F. Initially, the heat is off for several days. The initial
values at noon (¢ = 0) are then x(0) = 45, y(0) = z(0) = 35.

Portable heater. A small electric heater is turned on at noon, with
thermostat set for 100°F. When the heater is running, it provides a 20°F
rise per hour, therefore it takes some time to reach 100°F (probably
never!). Newton’s cooling law
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Temperature rate = k(Temperature difference)

will be applied to five boundary surfaces: (0) the basement walls and
floor, (1) the basement ceiling, (2) the main floor walls, (3) the main
floor ceiling, and (4) the attic walls and ceiling. Newton’s cooling law
gives positive cooling constants kg, k1, ko, k3, k4 and the equations

¥ = ko(45b—x)+ ki(y — x),
Yy = kil —y)+ k(35 —y) + ks(z —y) + 20,
2= k3(y—2)+ka(35 - 2).

The insulation constants will be defined as kg = 1/2, k1 = 1/2, ko = 1/4,
ks = 1/4, k4 = 3/4 to reflect insulation quality. The reciprocal 1/k
is approximately the amount of time in hours required for 63% of the
temperature difference to be exchanged. For instance, 4 hours elapse for
the main floor. The model:

1 1
/
= = S(35—y) + (2 —y)+2
y %( y)+§(35 y)+ 5z —y) +20,
Z = Z(y—z)+1(35—z).

The homogeneous solution in vector form is given in terms of constants
a=1++5/4,b=1—+/5/4, and arbitrary constants ci, c2, c3 by the
formula

l‘h(t) —1 2 2
yn(t) | =cret 0 | +ece | V5 | +ese | =B
zp(t) 2 1 1

A particular solution is an equilibrium solution

wp(t) %
yp(t) | = %
2p(t) %

The homogeneous solution has limit zero at infinity, hence the temper-
atures of the three spaces hover around x = 56.4, y = 67.7, z = 43.2
degrees Fahrenheit. Specific information can be gathered by solving for
c1, ¢2, c3 according to the initial data z(0) = 45, y(0) = 2(0) = 35. The
answers are

25 7 25 7
c1 =9, 02—?—1-5\/5, 03—?—5 5.
Underpowered heater. To the main floor each hour is added 20°F, but
the heat escapes at a substantial rate, so that after one hour y ~ 68°F.
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After five hours, y ~ 68°F. The heater in this example is so inadequate
that even after many hours, the main living area is still under 69°F.

Forced air furnace. Replacing the space heater by a normal furnace
adds the difficulty of switches in the input, namely, the thermostat
turns off the furnace when the main floor temperature reaches 70°F,
and it turns it on again after a 4°F temperature drop. We will suppose
that the furnace has four times the BTU rating of the space heater,
which translates to an 80°F temperature rise per hour. The study of
the forced air furnace requires two differential equations, one with 20
replaced by 80 (DE 1, furnace on) and the other with 20 replaced by 0
(DE 2, furnace off). The plan is to use the first differential equation on
time interval 0 < t < t;, then switch to the second differential equation
for time interval t; < ¢t < t9. The time intervals are selected so that
y(t1) = 70 (the thermostat setting) and y(t2) = 66 (thermostat setting
less 4 degrees). Numerical work gives the following results.

Time in minutes | Main floor temperature ‘ Model ‘ Furnace

31.6 70 DE 1 on
40.9 66 DE 2 off
45.3 70 DE 1 on
54.6 66 DE 2 off

The reason for the non-uniform times between furnace cycles can be
seen from the model. Each time the furnace cycles, heat enters the main
floor, then escapes through the other two levels. Consequently, the initial
conditions on each floor applied to models 1 and 2 are changing, resulting
in different solutions to the models on each switch.

Chemostats and Microorganism Culturing

A vessel into which nutrients are pumped, to feed a microorganism,
is called a chemostat!. Uniform distributions of microorganisms and
nutrients are assumed, for example, due to stirring effects. The pumping
is matched by draining to keep the volume constant.

'The October 14, 2004 issue of the journal Nature featured a study of the co-
evolution of a common type of bacteria, Escherichia coli, and a virus that infects
it, called bacteriophage T7. Postdoctoral researcher Samantha Forde set up ”micro-
bial communities of bacteria and viruses with different nutrient levels in a series of
chemostats — glass culture tubes that provide nutrients and oxygen and siphon off
wastes.”
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Input Feed Output Effluent

Figure 7. A Basic
Chemostat. A stirred
bio-reactor operated as a
chemostat, with continuous inflow
e and outflow. The flow rates are
[N I controlled to maintain a constant
culture volume.

In a typical chemostat, one nutrient is kept in short supply while all
others are abundant. We consider here the question of survival of the
organism subject to the limited resource. The problem is quantified as
follows:

x(t) = the concentration of the limited nutrient in the vessel,
y(t) = the concentration of organisms in the vessel.

A special case of the derivation in J.M. Cushing’s text for the organism
E. Coli? is the set of nonlinear differential equations?

1
(2) r' = —0.075z + (0.075)(0.005) — &g(fn)y,
y' = —0.075y + g(z)y,

where g(z) = 0.682(0.0016 + 2)~!. Of special interest to the study of
this equation are two linearized equations at equilibria, given by

@) Wy = —0.075u; — 0.008177008175 us,
uhy = 0.4401515152 uy,
n v} = —1.690372243 v; — 0.001190476190 vy,
vh = 101.7684513 vy.

Although we cannot solve the nonlinear system explicitly, nevertheless
there are explicit formulas for u1, ue, v1, vo that complete the picture of
how solutions x(t), y(t) behave at t = oco. The result of the analysis is
that E. Coli survives indefinitely in this vessel at concentration y ~ 0.3.

2In a biology Master’s thesis, two strains of Escherichia coli were grown in a glucose-
limited chemostat coupled to a modified Robbins device containing plugs of silicone
rubber urinary catheter material. Reference: Jennifer L. Adams and Robert J. C.
McLean, Applied and Environmental Microbiology, September 1999, p. 4285-4287,
Vol. 65, No. 9.

3More details can be found in The Theory of the Chemostat Dynamics of Microbial
Competition, ISBN-13: 9780521067348, by Hal Smith and Paul Waltman, June 2008.
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air inlet

Feed Regervoir
pump

air inlet
— heater/cooler

stirring bar
Culture vessel

I R

magnetic stirrer

Effluent reservoir

Figure 8. Laboratory Chemostat.
The components are the Feed reservoir, which contains the nutrients, a stirred

chemical reactor labeled the Culture vessel, and the Effluent reservoir,
which holds the effluent overflow from the reactor.

Irregular Heartbeats and Lidocaine

The human malady of ventricular arrhythmia or irregular heartbeat
is treated clinically using the drug lidocaine.

' Xylocaine
0.5%| ften s

51 et Wiple s Nl Figure 9. Xylocaine label, a brand name for

the drug lidocaine.

Far intitration and

Morve Bloch,

To be effective, the drug has to be maintained at a bloodstream concen-
tration of 1.5 milligrams per liter, but concentrations above 6 milligrams
per liter are considered lethal in some patients. The actual dosage de-
pends upon body weight. The adult dosage maximum for ventricular
tachycardia is reported at 3 mg/kg.* The drug is supplied in 0.5%, 1%
and 2% solutions, which are stored at room temperature.

A differential equation model for the dynamics of the drug therapy uses

x(t) = amount of lidocaine in the bloodstream,

y(t) = amount of lidocaine in body tissue.

A typical set of equations, valid for a special body weight only, appears
below; for more detail see J.M. Cushing’s text [Cushing (2004)].
(5) 2/ (t) = —0.09x(¢) + 0.038y(¢),

y'(t) = 0.066x(t) — 0.038y(t).

“Source: Family Practice Notebook, http://www.fpnotebook.com/. The au-
thor is Scott Moses, MD, who practises in Lino Lakes, Minnesota.
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The physically significant initial data is zero drug in the bloodstream
2(0) = 0 and injection dosage y(0) = yo. The answers:

z(t) = —0.3367yge %1294 4+ 0.3367yne 00076t
y(t) = 0.2696y0e 01204 1 0.7304y0e00076%,

The answers can be used to estimate the maximum possible safe dosage
yo and the duration of time that the drug lidocaine is effective.

Nutrient Flow in an Aquarium

Consider a vessel of water containing a radioactive isotope, to be used as
a tracer for the food chain, which consists of aquatic plankton varieties

A and B.

Plankton are aquatic organisms that drift with the currents, typically
in an environment like Chesapeake Bay. Plankton can be divided into
two groups, phytoplankton and zooplankton. The phytoplankton are
plant-like drifters: diatoms and other alga. Zooplankton are animal-like
drifters: copepods, larvae, and small crustaceans.

Figure 10. Left: Bacillaria
paxillifera, phytoplankton.
Right: Anomura Galathea
zoea, zooplankton.

Let

x(t) = isotope concentration in the water,
y(t) = isotope concentration in A,

z(t) = isotope concentration in B.

Typical differential equations are

o' (t) = —3x(t) + 6y(t) + 5z(t),
y'(t) = 2x(t) — 12y(t),
2/ (t) = z(t) + 6y(t) — 5z(t).

The answers are

x(t) = 6c1 + (1 + \/6)026(—10+x/6)t +(1- \/6)03e(_10_‘/6)t,
y(t) = c1 + 626(710“/6” + cge(*lof\/é)t,
12

2(t) = 301 — (2 + \/ﬁ) 626(710+\/6)t 4 (_2 + \/ﬁ> cge(flofx/é)t'
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The constants c1, ca, c3 are related to the initial radioactive isotope
concentrations x(0) = zg, y(0) = 0, 2(0) = 0, by the 3 x 3 system of
linear algebraic equations

6c1 + (1+V6)c2 + (1—V6)es = o,
1 + c2 + c3

%01 — (2+\/ﬁ>62 + (—2+\/R>C3 = 0.

Il
o

Biomass Transfer

Consider a European forest having one or two varieties of trees. We
select some of the oldest trees, those expected to die off in the next few
years, then follow the cycle of living trees into dead trees. The dead trees
eventually decay and fall from seasonal and biological events. Finally,
the fallen trees become humus.

Figure 11. Forest Biomass. Total biomass is a parameter used to assess
atmospheric carbon that is harvested by trees. Forest management uses biomass
subclasses to classify fire risk.

Let variables x, y, z, t be defined by

x(t) = biomass decayed into humus,
y(t) = biomass of dead trees,
z(t) = biomass of living trees,

t = time in decades (decade = 10 years).

A typical biological model is

"(t) = —a(

T t) + 3y(t),
v ‘(t) = ygt

) +52(1),
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Suppose there are no dead trees and no humus at ¢t = 0, with initially zg
units of living tree biomass. These assumptions imply initial conditions
z(0) =y(0) =0, 2(0) = 2. The solution is

_ 15 —5t -3t —t
:r(t)—5820(e —2e " +e ),
_ 2 (_ -5t -3t
y(t)—2z0( e +e ),
2(t) = zpe .

The live tree biomass z(t) = zpe~® decreases according to a Malthusian
decay law from its initial size zg. It decays to 60% of its original biomass
in one year. Interesting calculations that can be made from the other
formulas include the future dates when the dead tree biomass and the
humus biomass are maximum. The predicted dates are approximately
2.5 and 8 years hence, respectively.

The predictions made by this model are trends extrapolated from rate
observations in the forest. Like weather prediction, it is a calculated
guess that disappoints on a given day and from the outset has no pre-
dictable answer.

Total biomass is considered an important parameter to assess atmo-
spheric carbon that is harvested by trees. Biomass estimates for forests
since 1980 have been made by satellite remote sensing data with instances
of 90% accuracy (Science 87(5), September 2004).

Pesticides in Soil and Trees

A Washington cherry orchard was sprayed with pesticides.

Figure 12. Cherries in June.

Assume that a negligible amount of pesticide was sprayed on the soil.
Pesticide applied to the trees has a certain outflow rate to the soil, and
conversely, pesticide in the soil has a certain uptake rate into the trees.
Repeated applications of the pesticide are required to control the insects,
which implies the pesticide levels in the trees varies with time. Quantize
the pesticide spraying as follows.
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x(t) = amount of pesticide in the trees,
y(t) = amount of pesticide in the soil,
r(t) = amount of pesticide applied to the trees,

t = time in years.

A typical model is obtained from input-output analysis, similar to the
brine tank models:

(t)

x 2x(t) — y(t) + r(t),
y'(t)

= 2x(t) — 3y(t).

In a pristine orchard, the initial data is 2(0) = 0, y(0) = 0, because the
trees and the soil initially harbor no pesticide. The solution of the model
obviously depends on 7(t). The nonhomogeneous dependence is treated
by the method of variation of parameters infra. Approximate formulas
are

t

a(t) ~ / (1.1061-6(““) —0.126*2'6(“"))7“(U)du,
0
t

y(t) ~ / (0.49e19¢=) — 0492661 ) 1 (u)du.
0

The exponential rates 1.6 and —2.6 represent respectively the accumu-
lation of the pesticide into the soil and the decay of the pesticide from
the trees. The application rate r(t) is typically a step function equal to
a positive constant over a small interval of time and zero elsewhere, or a
sum of such functions, representing periodic applications of pesticide.

Forecasting Prices

A cosmetics manufacturer has a marketing policy based upon the price
x(t) of its salon shampoo.

Figure 13. Salon
shampoo sample.

The marketing strategy for
the shampoo is to set the
price z(t) dynamically to
reflect demand for the
product.
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The production P(t) and the sales S(¢) are given in terms of the price
x(t) and the change in price 2/(t) by the equations
3
P(t)y=4- Zm(t) —82'(t) (Production),
S(t) = 15 — 4x(t) — 22(t) (Sales).
The differential equations for the price x(t) and inventory level I(t) are

'(t) = k(I(t) — o),
I'(t) = P(t) — S(t).

The inventory level Iy = 50 represents the desired level. The equations
can be written in terms of x(t), I(t) as follows.

Z'(t) = kI(t) — kI,
re = ?Jc(t) _GRI(t) + 6k — 1L

If k=1, (0) = 10 and I(0) = 7, then the solution is given by

A4 86 g
W =g3+e
I(t) =50 — 43¢~ 13/2,

The forecast of price z(t) ~ 3.39 dollars at inventory level I(t) ~ 50 is
based upon the two limits

t—o0 t—o0

44
lim z(t) = 13 lim I(t) = 50.

Coupled Spring-Mass Systems

Three masses are attached to each other by four springs as in Figure 14.
Figure 14. Three masses

ki ko ks kg X
Y RO RO SO connected by springs. The masses
slide along a frictionless horizontal
myp 2 ms3 surface.

The analysis uses the following constants, variables and assumptions.

Mass The masses my, mg, m3 are assumed to be point masses
Constants concentrated at their center of gravity.

Spring The mass of each spring is negligible. The springs op-
Constants erate according to Hooke's law: Force = k(elongation).

Constants k1, ko, k3, k4 denote the Hooke's constants.

The springs restore after compression and extension.
Position The symbols z1(t), x2(t), x3(t) denote the mass posi-
Variables tions along the horizontal surface, measured from their

equilibrium positions, plus right and minus left.
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Fixed Ends  The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion.
In this case, the law is

Newton’s Second Law Force = Sum of the Hooke’s Forces.

The model equations are

miz(t) = —kixi(t) + kalxe(t) — z1(2)],
(6) mory(t) = —kalza(t) — 21 (t)] + kalws(t) — 22(2)],
mg.%'g(t) = —k‘g [:Bg(t) — :Ez(t)] — k‘4$3(t).

The equations are justified in the case of all positive variables by observ-
ing that the first three springs are elongated by x1, xo — x1, T3 — X2,
respectively. The last spring is compressed by x3, which accounts for the
minus sign.

Another way to justify the equations is through mirror-image symmetry:
interchange ki <— ky4, ko <— k3, x1 <— x3, then equation 2 should be
unchanged and equation 3 should become equation 1.

Matrix Formulation. System (6) can be written as a second order
vector-matrix system

ma 0 0 (L'/I/ —]Cl — kg kg 0 I
0 my 0 17,2/ = ]{32 —k‘Q — kg kig x2
0 0 ms :L'g 0 k3 —kg — /{?4 I3

More succinctly, the system is written as
MR"(t) = KX(t)

where the displacement X, mass matrix M and stiffness matrix K
are defined by the formulas

T mi 0 0 —kl — k‘g k’Q 0
X= T2 |, M= 0 mo 0 s K= k:g —kg—kg k:g
I3 0 0 ms3 0 ]{?3 —k3 - k4

Numerical example. Let m; =1, mo =1, m3 =1, ky = 2, kg = 1,
ks =1, kg = 2. Then the system is given by
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The vector solution is given by the formula

I 1
9 = (ajcost+bysint) | 2
T3 1

+ <a2 cos V3t + by sin ﬁt) 0
-1
1
+ (azcos2t + bzsin2t) [ —1 |,

where a1, as, as, by, ba, bs are arbitrary constants.

Boxcars

A special case of the coupled spring-mass system is three boxcars on a
level track connected by springs, as in Figure 15.

k k Fi identi
gure 15. Three identical
i |
- - \mmn- boxcars connected by
m m m identical springs.

Except for the springs on fixed ends, this problem is the same as the one
of the preceding illustration, therefore taking k1 = k4 =0, ko = k3 = k,
m1 = me = m3 = m gives the system

m 0 0 Ty -k k 0\ [z
OmoO ||z =| k-2t k||x
0 0m/) \z5 0 k—k) \z3
Take k/m =1 to obtain the illustration
— 1 0
X" = -2 1%,
0 1 -1
which has vector solution
1 1
X = (a1+bit)| 1 |+ (agcost+ bysint) 0
1 -1
1
+ (ag cos V3t + bz sin \/§t> -2 1,
1

where a1, as, as, b1, ba, bg are arbitrary constants.
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The solution expression can be used to discover what happens to the
boxcars when the springs act normally upon compression but disengage
upon expansion. An interesting physical situation is when one car moves
along the track, contacts two stationary cars, then transfers its momen-
tum to the other cars, followed by disengagement.

Monatomic Crystals

Figure 16. A Crystal Model.

The n crystals are identical masses m assumed connected by equal springs of
Hooke’s constant k. The last mass is connected to the first mass.

The scalar differential equations for Figure 16 are written for mass po-

sitions 1, ..., &y, With 9 = xp, Tp+1 = z1 to account for the ring of
identical masses (periodic boundary condition). Then for k =1,...,n
d2.CCk

M-y = k(xgs1 — xp) + k(xg—1 — k) = k(zk—1 — 22 + Tg41)-

These equations represent a system z” = Az, where the symmetric ma-
trix of coefficients A = M 'K is given for n =5 and k/m = 1 by

—2 1 0 0 1

1 -2 1 0 0

A= 0 1 -2 1 0

0 0 1 -2 1

1 0 0 1 -2
-2 1 1

If n=3and k/m =1, then A = 1 -2 1| and the solutions x1, xo,

1 1-2

x3 are linear combinations of the functions 1, ¢, cos/3t, sin v/3t.

Electrical Network I

Consider the LR-network of Figure 17.

— Iy Figure 17. An
electrical network.

There are three
MLMQ Ls \L resistors Ry, Ro, R3

19 and three inductors
§ Rl Ll, LQ, L3. The
13 currents i1, i2, i3 are
Ry Rs defined between
Ny W/ nodes (black dots).
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The derivation of the differential equations for the loop currents iy, is,
i3 uses Kirchhoff’s laws and the voltage drop formulas for resistors and
inductors. The black dots in the diagram are the nodes that determine
the beginning and end of each of the currents i1, 42, i3. Currents are
defined only on the outer boundary of the network. Kirchhoff’s node law
determines the currents across Lo, L3 (arrowhead right) as i — i1 and
i3 —1i1, respectively. Similarly, io — i3 is the current across R; (arrowhead
down). Using Ohm’s law Vp = RI and Faraday’s law V; = LI’ plus
Kirchhoff’s loop law algebraic sum of the voltage drops is zero around a
closed loop (see the maple code below), we arrive at the model

I
1 L]_ 2 Ll 35

. Ry R2> . (Rl Rg) .
/ _ _

2 (Lz L 2 Loy L1 '3
. R Rs\ . Ri  Rs R3> )
/ _ - e _ - i )
C (Ls L1>12 <L3 Ly Ls "

A computer algebra system is helpful to obtain the differential equations
from the closed loop formulas. Part of the theory is that the number of
equations equals the number of holes in the network, called the connec-
tivity. Here’s some maple code for determining the equations in scalar
and also in vector-matrix form.

loopl:=L1*D(i1)+R3*i3+R2*i2=0;
loop2:=L2*D(i2)-L2*D(i1)+R1*(i2-1i3)+R2¥i2=0;
loop3:=L3*D(i3)-L3*D(i1)+R3*13+R1*(13-12)=0;
f1:=solve(loopl,D(il));
f2:=solve(subs(D(il1)=£f1,lo00p2),D(i2));
£f3:=solve(subs(D(i1)=f1,lo0p3),D(i3));
with(linalg):
jacobian([f1,f2,£3],[i1,i2,i3]);

Electrical Network 11

Consider the LR-network of Figure 18. This network produces only two
differential equations, even though there are three holes (connectivity
3). The derivation of the differential equations parallels the previous
network, so nothing will be repeated here.

A computer algebra system is used to obtain the differential equations
from the closed loop formulas. Below is maple code to generate the
equations le = fl, 7/2 = fg, i3 = f3.

loopl:=L1*D(i1)+R2*(i1-12)+R1*(i1-i3)=0;
loop2:=L2*D(i2)+R3*(i2-i3)+R2*(i2-i1)=0;
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loop3:=R3*(i3-12)+R1*(i3-i1)=E;
£3:=so0lve(loop3,i3);
f1:=solve(subs(i3=£3,loo0p1),D(il));
f2:=solve(subs(i3=£3,1lo0p2),D(i2));

- O
= 11 Ll
Rl R2
VW VW
Sa. B3
13 =— g =—

Figure 18. An electrical network.
There are three resistors R;, Ro, R3, two inductors Ly, Lo and a battery E.
The currents i1, is, i3 are defined between nodes (black dots).

The model, in the special case L1 = Ly =1 and R{ = Ry = R3 = R:

qo= - oMy My, E
1 = 2 1 2 2 27
iy = s, _ 3, 4+ E
2 = 9 1 9 2 25
S Lo Lo F
13 = 211 222 2R.

It is easily justified that the solution of the differential equations for
initial conditions i1(0) = i2(0) = 0 is given by
E E

i(t) = 3t ia(t) = S

Logging Timber by Helicopter

Certain sections of National Forest in the USA do not have logging ac-
cess roads. In order to log the timber in these areas, helicopters are
employed to move the felled trees to a nearby loading area, where they
are transported by truck to the mill. The felled trees are slung beneath
the helicopter on cables.

s
_a-qg...'l T

Figure 19. Helicopter logging.
Left: An Erickson helicopter lifts felled
trees.

Right: Two trees are attached to the
cable to lower transportation costs.
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The payload for two trees approximates a double pendulum, which oscil-
lates during flight. The angles of oscillation 61, 65 of the two connecting
cables, measured from the gravity vector direction, satisfy the following
differential equations, in which g is the gravitation constant, mi, mso
denote the masses of the two trees and L1, Lo are the cable lengths.

(m1 + mg)L%Q,II + mQLlLQHIQ, + (ml + mg)ngel =0,
TnngLg@,l, + THQL%GIQI + maoLogfBy = 0.

This model is derived assuming small displacements 6, 62, that is,
sinf =~ 6 for both angles, using the following diagram.

. ml
01 :
LQ Figure 20. Logging Timber by Helicopter.
Mo \ The cables have lengths Ly, Ly. The angles 61, 05 are
© 0y measured from vertical.

The lengths L1, Lo are adjusted on each trip for the length of the trees,
so that the trees do not collide in flight with each other nor with the
helicopter. Sometimes, three or more smaller trees are bundled together
in a package, which is treated here as identical to a single, very thick
tree hanging on the cable.

Vector-matrix model. The angles 61, 0 satisfy the second-order
vector-matrix equation

(m1+ma)L1 male o\ _ [ mig+mag O 61
L1 L2 (92 - 0 g 92 '

This system is equivalent to the second-order system

, _mig +mag mag
0\ _ Lymy Lymy th
(92> | mug+mayg (m1+m2)yg (92>'
Lomy C Lomy

Earthquake Effects on Buildings

A horizontal earthquake oscillation F'(t) = Fj coswt affects each floor of
a b-floor building; see Figure 21. The effect of the earthquake depends
upon the natural frequencies of oscillation of the floors.

In the case of a single-floor building, the center-of-mass position x(t)
of the building satisfies maz” + kx = E and the natural frequency of
oscillation is \/k/m. The earthquake force F is given by Newton’s second
law: E(t) = —mF"(t). If w ~ \/k/m, then the amplitude of x(¢) is large
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compared to the amplitude of the force E. The amplitude increase in
x(t) means that a small-amplitude earthquake wave can resonant with
the building and possibly demolish the structure.

Figure 21. A 5-Floor
Building.

A horizontal earthquake wave F
affects every floor. The actual wave
has wavelength many times larger
F than the illustration.

— DN W e Ot

The following assumptions and symbols are used to quantize the oscilla-
tion of the 5-floor building.

e Each floor is considered a point mass located at its center-of-mass.
The floors have masses mq, ..., ms.

e Each floor is restored to its equilibrium position by a linear restor-
ing force or Hooke’s force —k(elongation). The Hooke’s constants

are ky, ..., ks.
e The locations of masses representing the 5 floors are z1, ..., 5.
The equilibrium position is ;1 = --- = x5 = 0.

e Damping effects of the floors are ignored. This is a frictionless
system.

The differential equations for the model are obtained by competition:
the Newton’s second law force is set equal to the sum of the Hooke’s
forces and the external force due to the earthquake wave. This results in
the following system, where kg = 0, Ej = m;F" for j = 1,2,3,4,5 and
F = Fycosuwt.

myz] = —(ki+k2)w1 + koxo + B,
mgl‘g = koxyp — (k‘g + kg)l’g + ksxs + FEo,
mgxhy = ksro — (ks + ka)xs + kaxy + Es,
m4:1cZ = kyxs — (k4 + k5)$4 + ksxs + Ey,
mszy = ksxa — (ks + ke)xs + Es.

In particular, the equations for a floor depend only upon the neighboring
floors. The bottom floor and the top floor are exceptions: they have just
one neighboring floor.

Vector-matrix second order system. Define

mq 0 0 0 0 T E1

0 mg 0O 0 O o Es
M= 0 0 mg 0 0 |, =| 23|, H=| Es5 |,

0 0 0 may 0 Ty E4

0 0 0 0 ms Is5 E5
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—k1 — ko ko 0 0 0
ko —ko — k3 ks 0 0
K = 0 ks —ks — k4 k4 0
0 0 k4 —ky — ks ks
0 0 0 ks —ks — k¢

In the last row, kg = 0, to reflect the absence of a floor above the fifth.
The second order system is

MzR"(t) = K% (t) + H(¢).

The matrix M is called the mass matrix and the matrix K is called
the Hooke’s matrix. The external force H(¢) can be written as a
scalar function E(t) = —F"(t) times a constant vector:

—

H(t) = —w?Fycoswt | ms

Identical floors. Let us assume that all floors have the same mass
m and the same Hooke’s constant k. Then M = ml and the equation
becomes

—2k k 0 0 0 1

k. —2k k 0 0 1

g =m! 0 k —2k ko 0% — Fyw?cos(wt) | 1
0 0 E =2k k 1

0 0 0 k —k 1

The Hooke’s matrix K is symmetric (K7 = K) with negative entries
only on the diagonal. The last diagonal entry is —k (a common error is
to write —2k).

Particular solution. The method of undetermined coefficients predicts
a trial solution X,(t) = € coswt, because each differential equation has
nonhomogeneous term —Fyw?coswt. The constant vector ¢ is found
by trial solution substitution. Cancel the common factor coswt in the
substituted equation to obtain the equation (m 'K +w? )¢ = Fow?b,
where b is column vector of ones in the preceding display. Let B(w) =

1 9 _y _ adj(B) .
m~ K 4+ w” I. Then the formula B~ = det(B) gives
. adj(B(w)) -~
= Fyw? b.
¢TI0 Qet(B(w))

The constant vector ¢ can have a large magnitude when det(B(w)) ~ 0.
This occurs when —w? is nearly an eigenvalue of m—1K.
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Homogeneous solution. The theory of this chapter gives the homo-
geneous solution Xp(t) as the sum

5
ih(t) = Z(aj CcoS w]‘t =+ bj sin w]'t)\_"j
=1

<

where 7 = w; andV:Vj#ﬁsatisfy
1 o\ . =
—K+r1)v =0.
m

Special case k/m = 10. Then

—-20 10 0 0 0
10 —-20 10 0 0
lK = 0 10 —-20 10 0
m
0 0 10 -20 10
0 0 0 10 -10

and the values w;

, ..., ws are found by solving the determinant equation
det((1/m)K + w?I) = 0, to obtain the values in Table 1.

Table 1. The natural frequencies for the special case k/m = 10.
Frequency Value
w1 0.900078068
w2 2.627315231
w3 4.141702938
Wy 5.320554507
ws 6.068366391

General solution. Superposition implies X (t) = X (t) + X,(¢t). Both
terms of the general solution represent bounded oscillations.

Resonance effects. The special solution X,(t) can be used to ob-
tain some insight into practical resonance effects between the incoming
earthquake wave and the building floors. When w is close to one of the
frequencies wi, ..., ws, then the amplitude of a component of X, can
be very large, causing the floor to take an excursion that is too large to
maintain the structural integrity of the floor.

The physical interpretation is that an earthquake wave of the proper
frequency, having time duration sufficiently long, can demolish a floor
and hence demolish the entire building. The amplitude of the earthquake
wave does not have to be large: a fraction of a centimeter might be
enough to start the oscillation of the floors.
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Earthquakes and Tsunamis

Seismic wave shape was studied for first order equations in Chapter 2,
page 151. Recorded here are some historical notes about seismic waves
and earthquake events.

The original Richter scale, with deprecated use in seismology, was
invented by seismologist C. Richter to rank earthquake power.

The moment magnitude scale (My) has largely replaced the original
Richter scale and its modified versions. The highest reported magnitude
is 9.5 My by the United States Geological Survey for the Concepcidn,
Chile earthquake of May 22, 1960. News reports and the general public
still refer to earthquake magnitude using the term Richter Scale.

The Sumatra earthquake of December 26, 2004 occurred close to a deep-
sea trench, a subduction zone where one tectonic plate slips beneath
another. Most of the earthquake energy is released in these areas as the
two plates grind towards each other. Estimates of magnitude 8.8 My,
to 9.3 My followed the event. The US Geological Survey estimated
9.2 My .

The Chile earthquake and tsunami of 1960 has been documented well.
Here is an account by Dr. Gerard Fryer of the Hawaii Institute of Geo-
physics and Planetology, in Honolulu.

The tsunami was generated by the Chile earthquake of May 22,
1960, the largest earthquake ever recorded: it was magnitude 9.6.
What happened in the earthquake was that a piece of the Pacific
seafloor (or strictly speaking, the Nazca Plate) about the size of
California slid fifty feet beneath the continent of South America.
Like a spring, the lower slopes of the South American continent
offshore snapped upwards as much as twenty feet while land along
the Chile coast dropped about ten feet. This change in the shape of
the ocean bottom changed the shape of the sea surface. Since the
sea surface likes to be flat, the pile of excess water at the surface
collapsed to create a series of waves — the tsunami.

The tsunami, together with the coastal subsidence and flooding,
caused tremendous damage along the Chile coast, where about
2,000 people died. The waves spread outwards across the Pa-
cific. About 15 hours later the waves flooded Hilo, on the island
of Hawaii, where they built up to 30 feet and caused 61 deaths
along the waterfront. Seven hours after that, 22 hours after the
earthquake, the waves flooded the coastline of Japan where 10-foot
waves caused 200 deaths. The waves also caused damage in the
Marquesas, in Samoa, and in New Zealand. Tidal gauges through-
out the Pacific measured anomalous oscillations for about three
days as the waves bounced from one side of the ocean to the other.
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11.2 Basic First-order System Methods

Solving 2 x 2 Systems

It is shown here that any constant linear system

L A= [ a b
u’ = A, A-(Cd)

can be solved by one of the following elementary methods.

(a) The integrating factor method for v’ = p(z)y + q(z).

(b) The second order constant coefficient formulas in Theo-
rem 45, Chapter 5.

Triangular A. Let’s assume b = 0, so that A is lower triangular. The
upper triangular case is handled similarly. Then i’ = Ad has the scalar

form
uy = auy,
I
uy = cuy + dug.

The first differential equation is solved by the growth/decay formula:

w1 (t) = uge™.

Then substitute the answer just found into the second differential equa-
tion to give
uhy = dug + cuge™.

This is a linear first order equation of the form y’' = p(z)y + ¢(z), to be
solved by the integrating factor method. Therefore, a triangular system
can always be solved by the first order integrating factor method.

An illustration. Let us solve i’ = Ad for the triangular matrix

1 0 . up = u,
A—<2 1), representing {ué — o+ s,

The first equation u} = u; has solution uy = cre!. The second equation
ub = 2uy + ug becomes upon substitution of u; = c1e! the new equation

u’Q = 2¢1et + Uua,

which is a first order linear differential equation with linear integrating
factor method solution us = (2¢1t + ¢2)et. The general solution of G’ =
Ad in scalar form is

Uy = clet, Ug = 201t6t + 026t.
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The vector form of the general solution is

ﬁ(t):c1<2i;>+c2<ft>.

The vector basis is the set

{(£)(2)

Non-Triangular A. In order that A be non-triangular, both b # 0
and ¢ # 0 must be satisfied. The scalar form of the system 4’ = Ad is

u) = auy + bug,
uh = cuy + dus.

Theorem 1 (Solving Non-Triangular i’ = Ad)
Solutions w1, uy of 4’ = Ad are linear combinations of the list of Euler
solution atoms obtained from the roots r of the quadratic equation

det(A—rI) =0.

Proof: The method: differentiate the first equation, then use the equations to
eliminate us, ub. The result is a second order differential equation for u;. The
same differential equation is satisfied also for us. The details:

uf = auf + bul Differentiate the first equation.
= au) + bcuy + bdus Use equation uh = cuy + dus.
= auy + bcuy + d(u) — auy) Use equation u} = auj + bus.
= (a + d)uj + (bc — ad)uy Second order equation for u; found

The characteristic equation of u} — (a + d)u} + (ad — bc)u; = 0 is
r? — (a4 d)r + (bc — ad) = 0.

Finally, we show the expansion of det(A — rI) is the same characteristic poly-

nomial:
a—r b
det(A—rI) = e d—r

= (a—r)(d—r)—1bec
— r2—(a+d)r+ad—bc.

The proof is complete.
The reader can verify that the differential equation for u; or us is exactly
u" — trace(A)u’ + det(A)u = 0.

Assume below that A is non-triangular, meaning b # 0 and ¢ # 0.

Finding u;. Apply the second order formulas, Theorem 45 in Chapter
5, to solve for u;. This involves writing a list of Euler solution atoms
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corresponding to the two roots of the characteristic equation 72 — (a +
d)r + ad — bc = 0, followed by expressing u; as a linear combination of
the two Euler atoms.

Finding us. Isolate us in the first differential equation by division:

1
ug = g(u/l —auy).

The two formulas for uq, us represent the general solution of the system
i’ = Au, when A is 2 x 2.

An illustration. Let’s solve i’ = Ad when

1 2 . u’l = u1+2u2,
A—<2 1), representing {Ulz — up oy,

The equation det(A —rI) =0 is (1 —r)? — 4 = 0 with roots r = —1 and
r = 3. The Euler solution atom list is L = {e~%,e3}. Then the linear
combination of Euler atoms is u; = cie™? + coe®. The first equation
u) = uy + 2uy implies uy = %(u’l — u1). The scalar general solution of
u’ = Ad is then

up = cle_t + 6263t, U9 = —cle_t + 0263t.
In vector form, the general solution is
. et e3t
u:cl<_6_t>+cz<e3t>.
Triangular Methods
Diagonal nxn matrix A = diag(ay,...,a,). Then the system X’ = AX

is a set of uncoupled scalar growth/decay equations:

zi(t) = arz1(t),
zh(t) = agwa(t),
D) = anza(b).

The solution to the system is given by the formulas

r1(t) = cre®?,
1o(t) = coe®?,
o(t) = cpett.

The numbers ci, ..., ¢, are arbitrary constants.
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Triangular n x n matrix A. If a linear system X’ = AX has a square
triangular matrix A, then the system can be solved by first order scalar
methods. To illustrate the ideas, consider the 3 x 3 linear system

2 00
X'=13 3 0 |X.

4 4 4
The coefficient matrix A is lower triangular. In scalar form, the system
is given by the equations

i (t) = 2x1(t),
zh(t) = 3x1(t) + 3z2(t),
Ig(t) = 4:cl(t) + 4$2(t) + 4x3(t).

A recursive method. The system is solved recursively by first order
scalar methods only, starting with the first equation | (t) = 2x1(¢). This
growth equation has general solution x1(t) = c1e?'. The second equation
then becomes the first order linear equation

xé (t) = 3.%1(15) + 3.%‘2(75)
= 3wa(t) + 3cie?.

The integrating factor method applies to find the general solution z2(t) =
—3c1e2t+coe3t. The third and last equation becomes the first order linear
equation

xh(t) = dxi(t) + 4za(t) + 4as(t)
= dx3(t) + dcre? + 4(—3cie? + cpedt).

The integrating factor method is repeated to find the general solution
r3(t) = 4cre? — degedt + czett.

In summary, the scalar general solution to the system is given by the
formulas

r1(t) = cre?,

T2 (t) = —30162t + 0263t,

r3(t) = 4cre® —degedt + czett.
Structure of solutions. A system X' = AX for n X n triangular A
has component solutions xi(t), ..., x,(t) given as polynomials times
exponentials. The exponential factors e®1t, ... e%n! are expressed in

terms of the diagonal elements aq1, ..., a,, of the matrix A. Fewer than
n distinct exponential factors may appear, due to duplicate diagonal
elements. These duplications cause the polynomial factors to appear.
The reader is invited to work out the solution to the system below,
which has duplicate diagonal entries a1; = age = aszz = 2.

i (t) = 2x1(t),

2h(t) = 3xi(t) + 2z2(2),
zh(t) = Adxi(t) + dxa(t) + 225(t).
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The solution, given below, has polynomial factors ¢ and t?, appearing

because of the duplicate diagonal entries 2, 2, 2, and only one exponential

factor e2t.

r1(t) = ce?,
xI9 (t) = 3Clt€2t + Cge%,
r3(t) = 4derte® + 6eqt2e? + degte® + cse?.

Conversion to Systems

Routinely converted to a system of equations of first order are scalar
second order linear differential equations, systems of scalar second order
linear differential equations and scalar linear differential equations of
higher order.

Scalar second order linear equations. Consider an equation
au” 4+ bu' + cu = f where a # 0, b, ¢, f are allowed to depend on ¢,
"= d/dt. Define the position-velocity substitution

Then 2’ = v =yandy = v’ = (—=bu' —cu+ f)/a = —(b/a)y — (¢/a)z +
f/a. The resulting system is equivalent to the second order equation, in
the sense that the position-velocity substitution equates solutions of one
system to the other:

o g
v = =Ly~ Xy + L8,

The case of constant coefficients and f a function of ¢ arises often enough
to isolate the result for further reference.

Theorem 2 (System Equivalent to Second Order Linear)
Let a # 0, b, ¢ be constants and f(¢) continuous. Then au”+bu'+cu = f(t)
is equivalent to the first order system

oW (1) = ( oo >Vv(t)+ ( f?t) ) W (t) = ( Z,((?) )

Converting second order systems to first order systems. A sim-
ilar position-velocity substitution can be carried out on a system of two
second order linear differential equations. Assume

" /
aruf +buy +cuy = fi,
agug + bgu’2 —+ cous = f2.
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Then the preceding methods for the scalar case give the equivalence

!/

al 0 0 O Ul 0 al 0 0 Ul 0
0 al 0 0 u’l . —C1 —bl 0 0 u’l + f1
0 0 ag 0 u9 0 0 0 a9 ug 0
0 0 0 as ’U,/2 0 0 —C9 —bQ u'2 f2

Coupled spring-mass systems. Springs connecting undamped cou-
pled masses were considered at the beginning of this chapter, page 754.
Typical equations are

mlx’{(t) = —k?ll‘l(t) + ko [xg(t) — :I?l(t ],
(1) mawy(t) = —hkalwa(t) — 21(1)] + kslws(t) — 22(1)],
m3x’3’(t) = —]{13 [.’L’g(t) — T2 (t)] — k‘4353(7f).

The equations can be represented by a second order linear system of
dimension 3 of the form MxX"” = KX, where the position X, the mass
matrix M and the Hooke’s matrix K are given by the equalities

I mq 0 0
X = T2 s M = 0 mao 0 s
I3 0 0 ms
—(kl -+ kg) ko 0
K = ko — (k2 + k3) ks
0 —ks3 — (ks + k4)

Systems of second order linear equations. A second order sys-
tem MR" = K% + F(t) is called a forced system and F is called the
external vector force. Such a system can always be converted to a sec-
ond order system where the mass matrix is the identity, by multiplying
by M1
" = M7'KR + M7'F (¢).

The benign form X’ = AX + G (t), where A= MK and G = M~'F,
admits a block matrix conversion into a first order system:

d(x@t\ _ (0]I % (t) 0
a\ =zt | — Alo %'(t) + G(@t) |-

Damped second order systems. The addition of a damper to each
of the masses gives a damped second order system with forcing

MR" = BR' + KX +F(2).

In the case of one scalar equation, the matrices M, B, K are constants
m, —c, —k and the external force is a scalar function f(¢), hence the
system becomes the classical damped spring-mass equation

ma” + cx’ + kx = f(t).
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A useful way to write the first order system is to introduce variable
u = MX, in order to obtain the two equations

= Mg/, 4" =B +KX+F().

Then a first order system in block matrix form is given by

MO0 \d[ R\ _ 0| M % (t) 0
o )a\zw)) = \xB )\ 20 )T\ Fe) |-

The benign form X’ = M~'BX’'+ M ~'KX + M~'F (t), obtained by left-
multiplication by M !, can be similarly written as a first order system
in block matrix form.

d (%1t \ _ 0o | I % (t) 0
dt \ ®'(t) - MK |M~'B %'(t) + M=F (@) |-

Higher order linear equations. Every homogeneous nth order
constant-coefficient linear differential equation

y™ = poy + -+ ppoay ™Y

can be converted to a linear homogeneous vector-matrix system

Y o 1 0 --- 0 Y
p ' o 0 1 --- 0 Y
@ y// _ y//
dx . ) .
: o o0 o --- 1 :
y=b Po P1 P2t Pn-1 T

This is a linear system 1’ = Ad where U is the n x 1 column vector
consisting of y and its successive derivatives, while the n x n matrix A
is the classical companion matrix of the characteristic polynomial

= po+pir+ par? 4 A puor™ T

To illustrate, the companion matrix for 74 = a 4 br + cr? 4+ dr® is

01 0 O
0 01 0
A= 00 01
a b ¢ d

The preceding companion matrix has the following block matrix form,
which is representative of all companion matrices.

(06| I
A_<abcd>'
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Continuous coefficients. It is routinely observed that the methods
above for conversion to a first order system apply equally as well to
higher order linear differential equations with continuous coefficients. To
illustrate, the fourth order linear equation ¢ = a(x)y+b(x)y +c(x)y” +
d(z)y" has first order system form @’ = Ad where A is the companion
matrix for the polynomial 7* = a(z) + b(z)r + c(x)r? + d(z)r3, = held
fixed.

Forced higher order linear equations. All that has been said above
applies equally to a forced linear equation like

y" = 2y +sin(x)y’ + cos(x)y” + z*y" + f(x).

It has a conversion to a first order nonhomogeneous linear system

0o 1 0 0 0 y

L, o o 1 o0 |. 0 |y
o o o 1 |Y"T| o | UT|

2 sinx cosx a? f(z) y"
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11.3 Structure of Linear Systems

Linear systems. A linear system is a system of differential equa-
tions of the form

/

ry = anuxr1 + - 4+ awr, +  fi,

Ty = anr1 + -+ amT, +  fo,
(1) . )

/

Ty, = GmiZ1 + 0+ QGnZn + fm,

where ' = d/dt. Given are the functions a;;(t) and f;(t) on some interval
a <t < b. The unknowns are the functions x(t), ..., z(t).

The system is called homogeneous if all f; = 0, otherwise it is called
non-homogeneous.

Matrix Notation for Systems. A non-homogeneous system of
linear equations (1) is written as the equivalent vector-matrix system

X'= AR +£(t),
where
1 f1 aip v+ Qln
X = : , f = : , A=

Tn fn am1 " QGmn

Existence-uniqueness. The fundamental theorem of Picard and
Lindeldf applied to the matrix system X' = A(t)X + f(t) says that a
unique solution X (t) exists for each initial value problem and the solu-
tion exists on the common interval of continuity of the entries in A(t)
and f(¢).

Three special results are isolated here, to illustrate how the Picard theory
is applied to linear systems.

Theorem 3 (Unique Zero Solution)
Let A(t) be an m x m matrix with entries continuous on a < ¢t < b. Then
the initial value problem

%' =A%, %(0)=0
has unique solution X (t) =0 on a < t < b.

Theorem 4 (Existence-Uniqueness for Constant Linear Systems)
Let A(t) = A be an m x n matrix with constant entries and let X be any
m-vector. Then the initial value problem

%' =A%, %(0)=%g

has a unique solution X (t) defined for all values of ¢.
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Theorem 5 (Uniqueness and Solution Crossings)
Let A(t) be an m X n matrix with entries continuous on a < t < b and

assume f (£) is also continuous on a < ¢ < b. If X(t) and ¥ (t) are solutions
of i/ = A(t)d + f(t) on a < t < b and X(t9) = ¥ (to) for some to,
a <ty <b, then X(t) =y (t) fora <t <b.

Superposition. Linear homogeneous systems have linear structure
and the solutions to nonhomogeneous systems obey a principle of su-
perposition.

Theorem 6 (Linear Structure)
Let X' = A(t)X have two solutions X1(t), X2(t). If k1, ko are constants,

—

then X (t) = k1 X1(t) + ko X2(t) is also a solution of X' = A(t)X.

The standard basis {w}}_;. The Picard-Lindeléf theorem applied
to initial conditions X (tp) = X, with X successively set equal to the
columns of the n x n identity matrix, produces n solutions wq, ...,
W, to the equation X’ = A(¢)X, all of which exist on the same interval
a<t<hb.

The linear structure theorem implies that for any choice of the constants
ci, ..., Cn, the vector linear combination

(2) i(t) :Cl\i}l(t)+CQW2(t)+"‘+CnVVn(t)

—

is a solution of X' = A(t)X.

Conversely, if 1, ..., ¢, are taken to be the components of a given vector
X, then the above linear combination must be the unique solution of
the initial value problem with X (t9) = X(. Therefore, all solutions of the
equation X’ = A(t)X are given by the expression above, where ¢y, ...,
cn, are taken to be arbitrary constants. In summary:

Theorem 7 (Basis)

The solution set of X’ = A(t)X is an n-dimensional subspace of the vector
space of all vector-valued functions X (t). Every solution has a unique basis
expansion (2).

Theorem 8 (Superposition Principle)
Let X' = A(t)X +f () have a particular solution Xp(t). IfX(t) is any solution
of ' = A(t)X +1 (), then X (¢) can be decomposed as homogeneous plus
particular:

X(t) = Xn(t) + Xp(t).
The term X (t) is a certain solution of the homogeneous differential equation
X' = A(t)X, which means arbitrary constants ¢y, ¢a, ... have been assigned
certain values. The particular solution X,(t) can be selected to be free of
any unresolved or arbitrary constants.
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Theorem 9 (Difference of Solutions)
Let X’ = A(t)X + f () have two solutions X =t (¢) and X = V (t). Define
¥ (t) =u(t) — v (t). Then y(t) satisfies the homogeneous equation

y' =A@®)y.

General Solution. We explain general solution by example. If a
formula x = cie? + coe?! is called a general solution, then it means that
all possible solutions of the differential equation are expressed by this
formula. In particular, it means that a given solution can be represented
by the formula, by specializing values for the constants ¢y, co. We expect
the number of arbitrary constants to be the least possible number.

The general solution of ' = A(t)X +f (t) is an expression involving arbi-
trary constants ci, co, ...and certain functions. The expression is often
given in vector notation, although scalar expressions are commonplace
and perfectly acceptable. Required is that the expression represents all
solutions of the differential equation, in the following sense:

(a) Every assignment of constants produces a solution of
the differential equation.

(b) Every possible solution is uniquely obtained from the
expression by specializing the constants.

Due to the superposition principle, the constants in the general solution
are identified as multipliers against solutions of the homogeneous differ-
ential equation. The general solution has some recognizable structure.

Theorem 10 (General Solution)

Let A(t) be nxn and f(t) n x 1, both continuous on an interval a < ¢ < b.
The linear nonhomogeneous system %' = A(t)X + f (¢) has general solution
X given by the expression

% = Ru(t) + %, (1).

y
¥’ = A(t)y, in which are to be found n arbitrary constants c¢i, ..., ¢,.

n
The term X = % ,(t) is a particular solution of ' = A(t)X +f (), in which
there are present no unresolved nor arbitrary constants.

The term ¥ = X,(t) is a general solution of the homogeneous equation
P

Recognition of homogeneous solution terms. An expression X
for the general solution of a nonhomogeneous equation ' = A(£)X +f (¢)
involves arbitrary constants c1, ..., ¢,. It is possible to isolate both terms
X, and X, by a simple procedure.

To find X, set to zero all arbitrary constants ci, ca, ...; the resulting
expression is free of unresolved and arbitrary constants.
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To find X, we find first the vector solutions ¥ = tix(t) of y' = A(t)¥,
which are multiplied by constants c¢;. Then the general solution X of
the homogeneous equation y' = A(t)y is given by

—

Xh(t) = Clﬁl(t) + Cgﬁg(t) + -+ Cnﬁn(t).
Use partial derivatives on expression X to find the column vectors

0

This technique isolates the vector components of the homogeneous solu-
tion from any form of the general solution, including scalar formulas for
the components of X. In any case, the general solution X of the linear
system X’ = A(t)X + £ (¢) is represented by the expression

X = cri1(t) + catin(t) + -+ + cplin(t) + Xp(t).

In this expression, each assignment of the constants c1, ..., ¢, produces
a solution of the nonhomogeneous system, and conversely, each possible
solution of the nonhomogeneous system is obtained by a unique special-
ization of the constants cq, ..., c,.

To illustrate the ideas, consider a 3 x 3 linear system X' = A(t)% + £ (t)
with general solution

I

T2

T3

1!
I

given in scalar form by the expressions

1 clet + CQe_t +t,
xIo (Cl + Cg)et + Cgezt,
T3 (2c2 — c1)e™! + (4e1 — 2c3)e?! + 2t.

To find the vector form of the general solution, we take partial derivatives

—

i X . .
up — Pen with respect to the variable names ¢y, co, c3:
Ck
et et 0
ﬁl = et N ﬁg = €t s ﬁg = €2t
—e7t + 4e% 2t —2¢2t

To find X ,(¢), set ¢1 = c2 = c3 = 0:
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Finally,

X = Clﬁl(t) + Czﬁg(t) + Cgﬁg(t) + )_('p(t)

et et 0 t
= et + co et + c3 et + 0
—et 4 4% 2et —2e2t 2t

The expression X = c1u1(t) + cotia(t) +cgtiz(t) + X (t) satisfies required
elements (a) and (b) in the definition of general solution. We will develop
now a way to routinely test the uniqueness requirement in (b).

Independence. Constants c¢1, ..., ¢, in the general solution X =
X, + X, appear exactly in the expression Xj, which has the form

Xp=cily +cola+ -+ cplp.

A solution X uniquely determines the constants. In particular, the zero
solution of the homogeneous equation is uniquely represented, which can
be stated this way:

ciu1 + g+ +cpid, =0 implies ¢ =cp=---=¢, =0.

This statement equivalently says that the list of n vector-valued functions
ui(t), ..., Un(t) is linearly independent.

It is possible to write down a candidate general solution to some 3 x 3
linear system X’ = AX via equations like

xr1 = clet + CQet + 63€2t,
9 = c1et + coel + 26362t,
x3 = cret + coet + desge?t.

This example was constructed to contain a classic mistake, for purposes
of illustration.

How can we detect a mistake, given only that this expression is supposed
to represent the general solution? First of all, we can test that 4, =
0X /0cy, Uy = 0X /Ocg, Uz = 0X /Dcs are indeed solutions. But to insure
the unique representation requirement, the vector functions tq, o, Ug
must be linearly independent. We compute

t et 2t

(& &
1_1:1 = et s ﬁg = et s ﬁg = 26%
et et 42t

Therefore, i = U9, which implies that the functions uq, ts, U3 fail to
be independent. While is is possible to test independence by a rudimen-
tary test based upon the definition, we prefer the following test due to
Norwegian mathematician N. H. Abel (1802-1829).
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Theorem 11 (Abel’s Formula and the Wronskian)

Let X5 (t) = c1i1(t) + - - -+ cpuin(t) be a candidate general solution to the
equation X’ = A(¢)X. In particular, the vector functions U1(t), ..., U,(¢)
are solutions of X’ = A(t)X. Define the Wronskian by

w(t) = det({(@1(t)] - - [Tn(t))).
Then Abel’s formula holds:

t
w(t) = efto trace(A(s))dsw(to)ﬁ
In particular, w(t) is either everywhere nonzero or everywhere zero, accord-
ingly as w(to) # 0 or w(tg) = 0.

Theorem 12 (Abel’s Wronskian Test for Independence)
The vector solutions U1, ..., U, of X’ = A(t)X are independent if and only
if the Wronskian w(t) is nonzero for some t = ty.

Clever use of the point £y in Abel’s Wronskian test can lead to succinct
independence tests. For instance, let

et 6t €2t
ﬁl = et , ﬁg: et s ﬁg: 2621E
et et 4e2t

Then w(t) might appear to be complicated, but w(0) is obviously zero
because it has two duplicate columns. Therefore, Abel’s Wronskian test
detects dependence of i1, Us, Us.

To illustrate Abel’s Wronskian test when it detects independence, con-
sider the column vectors

et et 0
ﬁl = et s ﬁg = €t s ﬁg = 62t
—e 7t 4 42 2¢t —2e2t

At t =ty = 0, they become the column vectors

1 1 0
= 1|, de=| 1], d3=| 1
3 2 -2

Then w(0) = det({t1(0)|t2(0)|u3(0))) = 1 is nonzero, testing indepen-
dence of U, U9, U3.

®The trace of a square matrix is the sum of its diagonal elements. In literature,
the formula is called the Abel-Liouville formula.
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Initial value problems and the rref method. An initial value
problem is the problem of solving for X, given

R =AWR +£(t), R(t) = %o.
If a general solution is known,
X =ciuq(t) + -+ cpun