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11.4 Matrix Exponential

The problem

x'(t) = Ax(t), x(0)=xo

has a unique solution, according to the Picard-Lindelof theorem. Solve
the problem n times, when xy equals a column of the identity matrix,
and write wq(t), ..., wy(t) for the n solutions so obtained. Define the
matrix exponential by packaging these n solutions into a matrix:

e = aug(wi(t),. .., wn(t)).

By construction, any possible solution of x’ = Ax can be uniquely ex-
pressed in terms of the matrix exponential e4* by the formula

x(t) = e'x(0).

Matrix Exponential Identities

Announced here and proved below are various formulas and identities
for the matrix exponential e?:
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Where 0 is the zero matrix.
If AB = BA.

If AB = BA.

At and As commute.
Equivalently, eAte=4t = J.

Putzer's spectral formula —
see page 776.

Ais 2 X 2, A\ # Ao real.
Ais 2 X2, A\ = \g real.

Ais2x2, N\ :X2:a+ib,
b>0.

Picard series. See page 777.

Jordan form J = PAP L.
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system x’ = Ax to find its

general solution. The method uses matrices Py, ..., P, constructed from
A and the eigenvalues Ai,..., A, of A, matrix multiplication, and the
solution r(t) of the first order n x n initial value problem
A 0 0 -0 O 1
1 X 0 --- 0 0 0
)= 0 1 As 00 Jr@), r0)=| .
0O 0 0 --- 1 X 0

The system is solved by first order scalar methods and back-substitution.
We will derive the formula separately for the 2 x 2 case (the one used
most often) and the n x n case.

Spectral Formula 2 x 2

The general solution of the 2 x 2 system x’ = Ax is given by the formula
x(t) = (ri(t)P1 + r2(t) P2) x(0),
where r1, ro, P, P> are defined as follows.

The eigenvalues r = A1, Ao are the two roots of the quadratic equation
det(A —rI) = 0.
Define 2 x 2 matrices P, P> by the formulas
P=1I, P,=A-\I
The functions r1(t), r2(t) are defined by the differential system

7’,1 = )\17"1, 7”1(0):1,
’I“é = Aorg + 711, 7“2(0):0.

Proof: The Cayley-Hamilton formula (A — A\I)(A — AaI) = 0 is valid for
any 2 X 2 matrix A and the two roots 7 = A1, A2 of the determinant equality
det(A —rI) = 0. The Cayley-Hamilton formula is the same as (A — \3) P> = 0,
which implies the identity AP, = Ao P>. Compute as follows.

X/(t) = (ri () Py + r5(t) P2) x(0)
= (AMr(t)P1 + 7m1(8) Py + Aara(t) P2) x(0)
= (r1(t)A + Aara(t) P2) x(0)
= (r1(t)A 4+ r2(t)AP) x(0)
= A(ri(t)I + ro(t) P2) x(0)
= Ax(t).
This proves that x(t) is a solution. Because ®(t) = r1(t) Py + r2(t) P> satisfies

®(0) = I, then any possible solution of x’ = Ax can be represented by the given
formula. The proof is complete.
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Real Distinct Eigenvalues. Suppose A is 2 x 2 having real distinct
eigenvalues A\, Ay and x(0) is real. Then

At AT
_ it _ (& — €
1 € ; T2 )\1 — AQ
and
e)\lt _ e)\gt
() = (M1 4+ = A — A1) ) x(0).
A1 — A9

The matrix exponential formula for real distinct eigenvalues:

At Aot

e J—
eAt — e/\ltI+

L (A- D).
/\1—)\2( )

Real Equal Eigenvalues. Suppose A is 2 x 2 having real equal
eigenvalues A\; = A2 and x(0) is real. Then r; = eM? ry = teM? and

x(t) = (M +teM (A = 1)) x(0).
The matrix exponential formula for real equal eigenvalues:

el = MU 4 teMt (A — M\ ).
Complex Eigenvalues. Suppose A is 2 x 2 having complex eigen-
values A\; = a + bi with b > 0 and Ay = a — bi. If x(0) is real, then a
real solution is obtained by taking the real part of the spectral formula.

This formula is formally identical to the case of real distinct eigenvalues.
Then

Re(x(t)) = (Re(ri(t))I + Re(ra(t)(A— M1I)))x(0)
(A—(a+ zb)I))) x(0)
atSin bt

= <e“tcosbtl+6 b(A—aI))) x(0)

ot Sinbt

= (Re(eW“‘b)t)f + Re(e

The matrix exponential formula for complex conjugate eigenvalues:

sin bt

et = et (cos bt I + (A— aI))) .

How to Remember Putzer’s 2 x 2 Formula. The expressions

e = r ()T + ro(t) (A — M),
eMt _ e

A1 — A2

(1 b

ri(t) = eMt, ro(t) =

are enough to generate all three formulas. Fraction rg is the d/d\-Newton
quotient for 1. It has limit teMt as \a — \i, therefore the formula
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includes the case A\ = \g by limiting. If \{ = Ay = a + ib with b > 0,
then the fraction 75 is already real, because it has for z = eMtand w = M\
the form ]

z—Z sin bt

t pr— f—
ra(t) w—w b

Taking real parts of expression (1) gives the complex case formula.

Spectral Formula n x n

The general solution of x’ = Ax is given by the formula

x(t) = (r1(t) Py + ra(t) Po + - - - + rp(t) Py) x(0),

where 11, ro, ..., Ty, P1, P, ..., P, are defined as follows.

The eigenvalues r = Aq,..., A, are the roots of the polynomial equation
det(A—rI) =0.

Define n x n matrices P, ..., P, by the formulas

Pi=1, Py=P1(A-Nal)=T_{(A-NI), k=2,....n

The functions ri(t), ..., r,(t) are defined by the differential system
?”/1 = )\17“1, 7’1(0) = 1,
’I”é = Aorg + 11, 7“2(0) =0,
= Apfn+7n—1, ra(0)=0.

Proof: The Cayley-Hamilton formula (A — A\ I)--- (A — X\,I) = 0 is valid for
any n X n matrix A and the n roots r = Aq,..., A\, of the determinant equality
det(A —rI) = 0. Two facts will be used: (1) The Cayley-Hamilton formula
implies AP,, = A\, Py; (2) The definition of Py implies A\ Py + Pxy1 = APy for
1 <k <n—1. Compute as follows.

= (ri(t)PL + -+ 1, (t)P,) x(0)

ZMW )P +Zﬁc 1Pk>

J

(<] HI
I I

n—1 n—1
Z/\H“k Pk—FTn( ))\ P, +ZrkPk+1> (0)

k=1

I
|

() APy, + 1o (t )APn) x(0)

< s ()P )X(O)

= Ax(t).

— (Z rk )\kPk + Pk+1) + Tn( ))\nPn> X(O)
=A

=] [=]
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Details: Differentiate the formula for x(¢). @ Use the differential equa-
tions for ry,...,ry. Split off the last term from the first sum, then re-index
the last sum. Combine the two sums. Use the recursion for P, and
the Cayley-Hamilton formula (A — A\, I)P, = 0. @ Factor out A on the left.

Apply the definition of x(¢).

This proves that x(t) is a solution. Because ®(t) = >")'_, rx(t) Py satisfies
®(0) = I, then any possible solution of x’ = Ax can be so represented. The
proof is complete.

Proofs of Matrix Exponential Properties

/
Verify (eAt) = Ae™. Let x, denote a column of the identity matrix. Define
x(t) = e'xg. Then
(") %0 = x'(1)
Ax(t)
= Aeftx.

Because this identity holds for all columns of the identity matrix, then (e4*)" and

Ae”t have identical columns, hence we have proved the identity (eAt)/ = AeAt.

Verify AB = BA implies Bel! = ¢'B. Define w;(t) = ¢**Bw, and
wo(t) = Bef'wy. Calculate w)(t) = Awy(t) and wh(t) = BAerw, =
ABeAtwq = Aws(t), due to BA = AB. Because wy(0) = wy(0) = wyg, then the
uniqueness assertion of the Picard-Lindel6f theorem implies that wq (t) = wa(t).
Because w is any vector, then e4*B = BeAt. The proof is complete.

Verify e4teBt = eMAHB) et xy be a column of the identity matrix. Define
x(t) = eMeBlxy and y(t) = eA+B)x;. We must show that x(t) = y(t) for
all t. Define u(t) = eB'xy. We will apply the result e*B = BeA*, valid for
BA = AB. The details:

X(t) = (eMu(t))

AeAtu(t) + et (t)
Ax(t) + et Bu(t)
= Ax(t) + Betu(t)
= (A+ B)x(t).

We also know that y'(t) = (A + B)y(¢) and since x(0) = y(0) = x¢, then the
Picard-Lindel6f theorem implies that x(t) = y(¢) for all t. This completes the
proof.

Verify ee?® = A9 Lot ¢ be a variable and consider s fixed. Define
x(t) = eMeA*xq and y(t) = eAt+9)xy. Then x(0) = y(0) and both satisfy the
differential equation u’(t) = Au(¢). By the uniqueness in the Picard-Lindelof
theorem, x(t) = y(t), which implies e*e4* = ¢A(+%) The proof is complete.

(o]
tn
Verify et = E An—'. The idea of the proof is to apply Picard iteration.
n!
n=0

At

By definition, the columns of e are vector solutions wy(t), ..., w,(t) whose
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values at ¢ = 0 are the corresponding columns of the n x n identity matrix.
According to the theory of Picard iterates, a particular iterate is defined by

t
Ynt1(t) =yo + / Ay, (r)dr, n>0.
0

The vector y( equals some column of the identity matrix. The Picard iterates
can be found explicitly, as follows.

vi(t) = yo+ fot Ayodr
va(t) = yo+ fy Ayi(r)dr

= yo+ fy AU+ At)yodr
= (14 At+ A%?/2) yo,

n!

yn(t) = (I+At+A2%++A"ﬁ> Yo-

The Picard-Lindel6f theorem implies that for yo = column k of the identity
matrix,

nhﬁn;() yn(t) = wi(t).

This being valid for each index k, then the columns of the matrix sum

converge as N — oo to wi(t), ..., w,(t). This implies the matrix identity

oo

At tn
_ n
et = E A ol

n=0

The proof is complete.

Computing e

Theorem 13 (Computing ¢’ for J Triangular)

If .J is an upper triangular matrix, then a column u(t) of e’* can be computed
by solving the system u’(¢) = Ju(t), u(0) = v, where v is the correspond-
ing column of the identity matrix. This problem can always be solved by
first-order scalar methods of growth-decay theory and the integrating factor
method.

Theorem 14 (Exponential of a Diagonal Matrix)
For real or complex constants Ay, ..., An,

6diag(>\1,...,>\n)t _ diag (6)\1t, L ’6)\7125) )
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Theorem 15 (Block Diagonal Matrix)

If A= diag(Bjy,..

., Bg) and each of By, ..

., By is a square matrix, then

et = diag (eBlt, ceey eB’“t) .

Theorem 16 (Complex Exponential)

Given real a, b, then
< a b)t
e —b a eat

Exercises 11.4

Matrix Exponential.

1. (Picard) Let A be real 2 x 2. Write
out the two initial value problems
which define the columns wy(t),

Wo (t) of €At .

(Picard) Let A be real 3 x 3. Write
out the three initial value problems
which define the columns wy(%),
wo(t), ws(t) of et

(Definition) Let A be real
2. Show that the solution x(
ety satisfies x' = Ax and x(
Ug.

2 X
t) =
0) =
Definition Let A be real n x n.

Show that the solution x(t)
e'x(0) satisfies x' = Ax.

Matrix Exponential 2 x 2. Find e4*
using the formula e = aug(wi, wy)
and the corresponding systems w} =
AWl, Wl(O) = (1)
0
1

is triangular so that first-order meth-
ods can solve the systems.

sa-(10)
oa-( 710

, WhH = Aw,
w(0) = . In these exercises A

1 0
0 2

(

cosbt sinbt
—sinbt cosbt

)

1 1
7. A_< : 0).
-1 1
8.A_< : 2).
Matrix Exponential Identities.
9.
10.
11.
12.

13.
14.

Putzer's Spectral Formula.
15.
16.
17.
18.

Spectral Formula 2 x 2 .
19.
20.
21.
22.

Real Distinct Eigenvalues.
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Spectral Formulan x n .

23.
39.
24.
40.
25.
41.
26.
42.
Real Equal Eigenvalues.
43.
27.
44.
28.
45.
29.
46.
30.
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31. 7.
32. 48.
33.
49.
34.
50.
How to Remember Putzer's 2 x 2 ) At
Formula. Computing .
35. 51.
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37. 53.

38. 54.



