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Predicting Genotype Frequency for Mendelian Traits at Hardy-Weinberg Equilibrium 

using Linear Algebra 

Introduction: 

 One of the many fields in which techniques of Linear Algebra can be applied is the 

study of Genetics.  More particularly, the field of Population Genetics and Genotype Frequency.   

 As the name implies, Population Genetics is concerned with studying populations and 

their differences in their genes.  These genetic differences refer to the genotype.  The genotype is 

the actual set of genes in DNA that determines any given trait.   

 Here, we are interested in using Linear Algebra to predict the genotype frequency of 

Mendelian traits under the assumptions of Hardy-Weinberg Equilibrium.  Mendelian traits are 

traits that are passed down via a single-locus system that involves a single dominant and single 

recessive allele.  We want to use Mendelian traits because they illustrate how Linear Algebra can 

be used in Population Genetics in the easiest way to understand.  To note, the assumptions of 

Hardy-Weinberg are: no genetic drift, a closed population, no mutations, random mating 

patterns, and no natural selection.  The reason we want these assumptions is that they make the 

predictions of genotype frequency more reliable and accurate.  

 The model equation for Hardy-Weinberg is: 

p2+2pq+q2=1 



p2 refers to the proportion of a population that is homozygous dominant, or AA genotype, for 

some given trait.  2pq refers to the proportion of heterozygotes, or Aa genotype.  Lastly, q2 refers 

to the proportions of homozygous recessive, or aa genotype.  

 With this knowledge, we can now model population proportions with matrices and 

frequency vectors. 

Model Matrix: 

 For our model matrix, we will consider a cross between the homozygous dominant 

(AA) genotype with all genotypes (i.e. with AA, Aa, and aa, respectively).  When we do this, we 

obtain the genotype frequencies in the vector form:  

Proportions=�
𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴
� 

AA with AA: 

AAxAA=�
1
0
0
� 

AA with Aa: 

AAxAa=�
1/2
1/2

0
� 

AA with aa: 

 

AAxaa=�
0
1
0
� 

Thus, we now can denote our model matrix as follows: 

A1=[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴]=�
1 1/2 0
0 1/2 1
0 0 0

� 

 

 



Genotype Frequency Vector: 

 Using a frequency vector, we can obtain the genotype frequencies of subsequent 

generations for our specific genetic cross.  This can be modeled by the linear equation: 

A1x=b 

where x is a frequency vector of the current genotype frequencies and b is the genotype 

frequency vector of the subsequent generation.  For simplicity, we will rewrite the equation as: 

A1xn=xn+1 

where n is the number of generations after the initial generation. 

 For our model, we will assume that all three genotypes have the same initial frequencies 
such that: 

x0=�
1/3
1/3
1/3

� 

Model Equations: 

 Now that we have all the information we need to proceed, say we want to find the 

genotype frequencies one generation after the initial generation.  To do this we simply solve for 

x1 via matrix multiply.  This would be written as follows: 

x1=A1x0=�
1 1/2 0
0 1/2 1
0 0 0

� �
1/3
1/3
1/3

�=�
1/2
1/2

0
� 

 Now say that we want to find the genotype frequency for second generation after the initial.  If 

we want to solve for the second generation’s genotype frequency, we would want to use the new 

current genotype frequency vector.  This would correspond to x1.  Thus, we could solve for the 

frequency vector as follows:  



A1x1=x2 

however, notice that there is another way to solve for x2.  By substitution, we can rewrite the 

equation and solve for it as follows: 

A1x1= A1(A1x0)=𝐴𝐴12x0= x2=�
3/4
1/4

0
� 

With this method of solving for xn we can much more easily solve for the genotype frequencies 

when Hardy-Weinberg Equilibrium is met.  To do this, we would just have to look at the 

equation: 

lim
𝑛𝑛→∞

𝐴𝐴1𝑛𝑛𝐴𝐴0  

We want to have n approach infinity because as each subsequent generation arises, the closer 

their genotype frequencies get to Hardy-Weinberg Equilibrium.  Thus, we will find that, at 

Hardy-Weinberg Equilibrium, xn and the genotype frequencies will be: 

xn=�
1
0
0
� 

From this we can conclude that, at Hardy-Weinberg Equilibrium, our cross will result in a 100 

percent frequency of the homozygous dominant genotype. 

 Now we can easily find the genotype frequencies for the cross between the heterozygous 

genotype and the cross between the homozygous recessive genotype at Hardy-Weinberg 

Equilibrium.  Of course, we would have to construct the model matrices first.  They are as 

follows: 



A2=[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴]=�
1/2 1/4 0
1/2 1/2 1/2

0 1/4 1/2
� 

A3=[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴]=�
0 0 0
1 1/2 0
0 1/2 1

� 

Using our same initial genotype frequency vector, we now can solve for the Hardy-Weinberg 

Equilibria using the same limit equation method as before.  The Equilibria are as follows: 

 

lim
𝑛𝑛→∞

𝐴𝐴2𝑛𝑛𝐴𝐴0=�
1/4
1/2
1/4

� 

lim
𝑛𝑛→∞

𝐴𝐴3𝑛𝑛𝐴𝐴0=�
0
0
1
� 

Thus, we see that the heterozygous cross results in 25 percent of the population being 

homozygous dominant, 50 percent heterozygous, and 25 percent homozygous recessive at 

Hardy-Weinberg Equilibrium.  For homozygous recessive cross, the resulting genotype 

frequency at Hardy-Weinberg Equilibrium is 100 percent homozygous recessive. 

Multiple Traits: 

 The great thing about this method of solving for genotype frequencies is that it does not 

exclusively apply to the prediction of genotype frequency for one Mendelian trait at a time.  We 

can use this method for finding genotype frequencies of two, three, or how ever many traits we 

want to look at a time.  To illustrate this, we can look at two generic loci which we will 

creatively call loci A and loci B.  This time, we will look at the cross between the genotype that 

is homozygous dominant for both traits (AABB) and all genotypes (i.e. with AABB, AABb, 

AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb, respectively). 



AB= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1/2 0 1/2 1/4 0 0 0 0
0 1/2 1 0 1/4 1/2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1/2 1/4 0 1 1/2 0
0 0 0 0 1/4 1/2 0 1/2 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

y0=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Now we can solve for Hardy-Weinberg Equilibrium the same way as before. 

lim
𝑛𝑛→∞

𝐴𝐴𝐴𝐴𝑛𝑛𝑦𝑦0=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
0
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Thus, we see that the resulting genotype frequency at Hardy-Weinberg Equilibrium for the two 

traits is 100 percent homozygous dominant for both traits. 

 

 

 



Conclusion: 

 As we have demonstrated, techniques of Linear Algebra, and matrix multiply in 

particular, serve as useful tools in predicting genotype frequencies and Hardy-Weinberg 

Equilibria for Mendelian traits. 

While we focused solely on simple Mendelian traits here, it is worth mentioning that 

these types of traits serve as a basis for more complexly inherited traits.  Though we did not 

delve into more complex situations of genetics, such as sex-linked traits, polygenic traits, linked 

genes, and lethal traits, the same general tools used here can be used for these more complex 

genetic traits.  Thus, as we can see, Linear Algebra can easily and efficiently be applied to the 

study of Population Genetics and Hardy-Weinberg Equilibrium at large.   
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