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Imagine a typical Google search. You open your internet browser, enter a phrase like “Microsoft” into 
the search bar and within moments your screen is filled with a list of links to different websites. You 
don’t have time to scroll through several pages of results to find the website you are looking for, so you 
want the search engine to provide you with the best information first so you can see it at the top of the 
list.  

Now imagine the same scenario from a website creator’s point of view. You have just made a website to 
promote your product. Now all you need is for people to visit your website and they are bound to make 
a purchase. How do you get your potential customers to see and know about your website? You want 
your site to appear as soon as someone makes a Google search for anything that your webpages talk 
about so that they will see and visit your website. 

This juxtaposition of wills creates an interesting challenge. Users want only the most relevant pages to 
be displayed at the top of a search result, but every website wants the top spots. If the most visible 
pages were those that contained the search phrase the most, any website could intentionally add 
hundreds of common searches hundreds of times to their website and be guaranteed a top spot, 
regardless of its actual relevance or importance to the user. To combat this, Google developed a system 
called the PageRank.  

Google’s original PageRank system assigned a value, called a PageRank, to every page in its network of 
websites. If a page’s PageRank is high, it will appear earlier in a search result. Each PageRank is 
calculated by the number of links that point to a given webpage and by the importance of the webpages 
that point to it.  

Consider the following figure, which displays a representation of a network of webpages. Each webpage 
has links to other webpages, shown here by arrows. Each link carries a fraction of the relevance that the 
webpage carries. Thus, a webpage with 3 outgoing links will give 1/3 of its importance to each of the 



webpages it links to. This can also be viewed as the probability of a user clicking on a given link if they 
are currently in a page containing that link.  

This network of links can be represented by a Stochastic or Probability Matrix, where each element is 
the probability of a link on a given webpage (represented by its column) being selected and taking the 
user to another webpage (represented by its row). The Stochastic Matrix M for the example network is 
shown below. 

 

Next, to calculate each page’s PageRank, we place initial values of 1/n into a vector of size n, where n is 
the number of pages in the network. In this case, n = 5, so the resulting vector is shown by 

Next, we iteratively multiply matrix M and vector V1 as a Markov Chain. For example, to get the second 
iteration of V1, called V2, we use M * V1 and get 



V3 can then be found using M*V2. This process is repeated many times until the values in the vector 
converge towards specific values and are stable. A faster calculation of Vk is Mk*V1. By selecting larger 

and larger values k, we see that the values of Vk stabilize at specific values. When k is 1000, the vector 
V1000 has the following values: 

Thus, these values correspond to each webpage’s PageRank. It is interesting to note that while page B 
(in green) has 4 different pages pointing to it and page E (in blue) has only 1, these two pages share the 
same PageRank. This is because E is pointed to by B, which has a large PageRank, so its PageRank gets 
boosted more than usual. A simplified example of this would be a website that has links pointing to it 
from 5 different small blogs versus a webpage that is referenced by WebMD. Obviously the more 
relevant and useful of the two pages is more likely to be the one referenced by WebMD.  

An interesting observation to note is that this usage of Markov Chains can be completed through Eigen 
analysis. Since we are looking for a stable vector so that M*V = V, this can be described as an 
Eigenvector of M corresponding to the eigenvalue of 1. This eigenvector can be found with the equation 
(M-λI)x = 0. By manipulating the resulting matrix using the toolkit operations until it reaches its Row-
Reduced Echelon Form, the general solution x = tv, where v is equal to the PageRank vector shown 
above. 

Although Google now uses additional algorithms apart from the original PageRank to order search 
results, Google’s use of linear algebra helped to make it one of the most effective and popular search 
engines on the internet. 

 


