
Nathan Taylor

Explaining the Linear Algebra in the Google PageRank Algorithm

Imagine a typical Google search. You open your internet browser, enter a phrase like “Microsoft” into
the search bar and within moments your screen is filled with a list of links to different websites. You
don’t have time to scroll through several pages of results to find the website you are looking for, so you
want the search engine to provide you with the best information first so you can see it at the top of the
list.

Now imagine the same scenario from a website creator’s point of view. You have just made a website to
promote your product. Now all you need is for people to visit your website and they are bound to make
a purchase. How do you get your potential customers to see and know about your website? You want
your site to appear as soon as someone makes a Google search for anything that your webpages talk
about so that they will see and visit your website.

This juxtaposition of wills creates an interesting challenge. Users want only the most relevant pages to
be displayed at the top of a search result, but every website wants the top spots. If the most visible
pages were those that contained the search phrase the most, any website could intentionally add
hundreds of common searches hundreds of times to their website and be guaranteed a top spot,
regardless of its actual relevance or importance to the user. To combat this, Google developed a system
called the PageRank.

Google’s original PageRank system assigned a value, called a PageRank, to every page in its network of
websites. If a page’s PageRank is high, it will appear earlier in a search result. Each PageRank is
calculated by the number of links that point to a given webpage and by the importance of the webpages
that point to it.

Consider the following figure, which displays a representation of a network of webpages. Each webpage
has links to other webpages, shown here by arrows. Each link carries a fraction of the relevance that the
webpage carries. Thus, a webpage with 3 outgoing links will give 1/3 of its importance to each of the

webpages it links to. This can also be viewed as the probability of a user clicking on a given link if they
are currently in a page containing that link.

This network of links can be represented by a Stochastic or Probability Matrix, where each element is
the probability of a link on a given webpage (represented by its column) being selected and taking the
user to another webpage (represented by its row). The Stochastic Matrix M for the example network is
shown below.

Next, to calculate each page’s PageRank, we place initial values of 1/n into a vector of size n, where n is
the number of pages in the network. In this case, n = 5, so the resulting vector is shown by

Next, we iteratively multiply matrix M and vector V1 as a Markov Chain. For example, to get the second
iteration of V1, called V2, we use M * V1 and get

V3 can then be found using M*V2. This process is repeated many times until the values in the vector
converge towards specific values and are stable. A faster calculation of Vk is Mk*V1. By selecting larger

and larger values k, we see that the values of Vk stabilize at specific values. When k is 1000, the vector
V1000 has the following values:

Thus, these values correspond to each webpage’s PageRank. It is interesting to note that while page B
(in green) has 4 different pages pointing to it and page E (in blue) has only 1, these two pages share the
same PageRank. This is because E is pointed to by B, which has a large PageRank, so its PageRank gets
boosted more than usual. A simplified example of this would be a website that has links pointing to it
from 5 different small blogs versus a webpage that is referenced by WebMD. Obviously the more
relevant and useful of the two pages is more likely to be the one referenced by WebMD.

An interesting observation to note is that this usage of Markov Chains can be completed through Eigen
analysis. Since we are looking for a stable vector so that M*V = V, this can be described as an
Eigenvector of M corresponding to the eigenvalue of 1. This eigenvector can be found with the equation
(M-λI)x = 0. By manipulating the resulting matrix using the toolkit operations until it reaches its Row-
Reduced Echelon Form, the general solution x = tv, where v is equal to the PageRank vector shown
above.

Although Google now uses additional algorithms apart from the original PageRank to order search
results, Google’s use of linear algebra helped to make it one of the most effective and popular search
engines on the internet.

