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1. Introduction 
With advances in technology, the cost to store large amounts of data has also seen a 
drastic decrease. In 1980, storing 26 megabytes of data on a traditional hard disk would 
cost somewhere around $5,000 USD which results in about $193,000 per gigabyte. By 
2009 one could purchase a single terabyte hard drive for a mere $74.99, or about $0.07 
per gigabyte (1) . This drastic decrease in the cost of storage might result in the conclusion 
that storing substantial amounts of data, computerized images for example, is cheap. 
However, this is largely dependent on ones definition of the word substantial. In this 
paper, we will discuss the ways that computers process images on a lossless basis, and 
compare this to how they can be compressed into a lossy format to trade image quality 
for file size. 

 
     2. Applications of SVD 

As discussed above, data storage might have become much simpler with the decrease in 
the cost of traditional hard drive storage, yet this is no reason to disregard the way that 
images are represented on computers themselves. Traditionally, the color spectrum 
consists of combinations of the three main additive colors, namely red, green and blue 
that can be used to create somewhere around 16.8 million different colors. Each of these 
three values ranges from 0 to 255 such that they can each be stored in a single byte, 
which is convenient when understanding how exactly images are displayed on a 
computer screen. 
 
Notably, a monitor consists of thousands of small pixels that each display a single one of 
these 16.8 million color possibilities. In order to set a pixel to a specific color, the RGB 
values of each of these pixels must be stored and set by the computer to produce a final 
image. There are many different ways to store these images with the first and least 
common being completely lossless image storage. For example, the  .tiff  image file format 
utilizes full image representation which means that each and every RGB value is stored in 



the computer's memory (2) . As a result, an image consisting of 5400 x 3600 pixels would 
require roughly 59 megabytes of storage. When dealing with terabytes of storage this is 
not a significant amount of memory, but when storing millions of images this quickly 
becomes an issue. 
 
All things considered, computer scientists and mathematicians alike have developed 
different methods to store images in computer memory such that they take up 
significantly less storage. Of course, you cannot directly represent the RGB values of 
every single pixel while still decreasing the amount of memory it requires, so these 
compressed formats are considered lossy as they do not store the image in its entirety. 
The goal with any good compression scheme is to find the right ratio of image quality to 
file size such that the image retains most of its quality while still decreasing the its size 
by a significant margin. One such method, coined Singular Value Decomposition uses the 
fact that images can be viewed in a similar manner to matrices and compressed using 
linear algebraic techniques. 
 
To elaborate, SVD requires that images be stored in computer memory as a matrix such 
that they can be operated on in a linear algebraic fashion. To simplify this process, we 
will consider black and white images such that each pixel is represented by a single value 
from 0 to 255 rather than each pixel requiring three different values like in the traditional 
colored RGB format. As a result, each pixel can then be represented with 8-bits or a 
single byte. Once the image has been stored in the computer as a matrix of black and 
white pixel data, we can then use SVD to compress the image.  

 
      3. Motivation for SVD 

Given an image with a specified resolution, we can represent the information within the 
image with a matrix  A.  The dimensions of this matrix relate the the resolution of the 
image itself, say that both can be represented by  n x d . We can reduce the dimensionality 
of this image by re-representing vectors in  d  dimensions as vectors in  r  dimensions where 
r < d . Note that we can easily do this dimension reduction by reducing the rank, or 
number of independent columns, of a matrix to achieve this  (4) . 
 
Something important to note is that our matrix of information can be factored into an  n x 
r  matrix, and a  r x d  matrix such that all of  A ’s columns can be written as linear 
combinations of the columns in the  n x r  matrix and its rows are linear combinations of 
the rows of the  r x d  matrix. Hence, while the original matrix  A  requires  (n   numbersd)·   
to be represented, the factorized matrices can be described by  r(n + d)  numbers and as a 
result, a small value of  r  will be a much simpler representation of the same information (4) . 
 



This is where the idea of compression comes in, as we are reducing the rank,  r , of a given 
matrix and therefore its size. In the case of an image, this is useful because we can trade 
the quality of an image in favor of the size it takes up on our computer. 

 
      4 . Explanation of the SVD Process 

As we understand, a matrix  A  which we can say holds black and white image 
information, is diagonalizable if it can be rewritten as: 
 

A = PDP -1 

 

where  P  is an invertible matrix and  D  is a diagonal matrix, meaning that only the 
elements on the diagonal of  D  can be non-zero. From the equation above, we can also 
conclude that the following is also true: 
 

AP = PD 
 

Then, if we consider separate columns of  P  and denote each column by  p i   and each 
diagonal entry in  D  by  λ i   we are left with the following: 

 
 

 
      D =  

 

 

P = (  p 1   p 2   ...  p n   ) 
 

Such that we get: 
 

PD = (  p 1 λ 1   p 2 λ 2   ...  p n λ n   ) 
 

And with this matrix multiplication,  PD , we can conclude that each diagonal value in  D 
picks its associated column in  P  and scales it. We can then conclude that the columns of 
P  must be eigenvectors of  A  and the diagonal entries of  D  must be the eigenvalues of  A . 
In order for any of this to hold, it must be true that  P -1   exists, which means that the matrix 
P  must be square (3) . As this is not the case with most image files we can generalize this 
process of diagonalization to apply to matrices of any shape through SVD. 
 



SVD is based on the fact that any matrix  A  which might be non square, has some  A T A  that 
will result in a square matrix that we can then extract eigenvectors from. Note that as a 
result, these eigenvectors form an orthonormal basis. If we take these eigenvectors and 
denote them as the columns in a matrix  V,  we can can take the transpose of  V  which 
results in  V T .  
 

V T  = eigenvectors(A T A) T  =     
 

Each of these eigenvectors will have an associated eigenvalue, which we can denote with 
λ. Then, we can take a modification of these eigenvalues and insert them on the diagonal 
of a matrix  D  that has the same dimensions as  A  and pad the rest of it with zeroes. This 
modification can be denoted as: 
 

 

We can then insert these into the matrix  D  which results in the following for a matrix  A 
that is  3 x 3 : 

 

D =  

 
Finally, we can form the last matrix  U  by performing the following: 

 
                     U  =  

 
Where NUL(A T ) represents Strang’s Special Solutions to the nullspace of A T . 
 
Then, the result of  A = UDV T   will result in the canceling out of distinct eigenvectors due 
to orthogonality and dot product, and non-distinct eigenvectors doing nothing in terms of 
changing the entries of  A . As a result, this new matrix  A  will be a less noisy version of the 
original based off its new rank  k  in comparison to the rank of the original matrix.  

 
       5. Information Retention 

The goal of SVD image compression is to summarize a given matrix of image 
information into one that is similar but contains fewer values. In terms of compression, 
this is an appealing characteristic because it allows us to decide exactly how much of a 
given image we want to summarize. For example, if we wanted to retain 90% of the 
information stored in an image matrix we would have an SVD matrix similar in size that 

https://www.codecogs.com/eqnedit.php?latex=%20%5Csigma%20%3D%20%5Csqrt%7B%5Clambda%7D%20%1


contains very little loss of the original image. In contract, we could choose to only retain 
5% of the image matrix information in favor of image storage size over image quality and 
suffer very large loss rates compared to the original image.  
 
As relates to SVD image compression, we can choose the relative loss rates based on the 
number of singular values, or rank  k , used to calculate the resulting SVD matrix. The 
largest singular values come first, so summing them up and dividing by the total number 
of singular values can be used to ultimately decide the number of singular values to be 
kept to attain the desired retention percentage. The approximated matrix can then be used 
to form a compressed version of the original image. See the below section for examples 
of the application of SVD with different rank values on a given image. 
 

       6. Samples 
As an example, we can perform SVD image compression on a sample image using code 
written in Matlab. The code used to complete this process and display the images and 
graphs below is included with the submission of this paper. 
 

 
Figure 1. The image that will be used to demonstrate SVD. 

 
See below for examples of SVD using different rank values. 

 



The rank of each image denotes the number of singular values in the SVD matrix 
approximation. For an analysis of the implications of different rank values and the 
resulting size of the image, see the below section. 
 

 
Figure 2. The SVD image with different rank values (3) . 

 
 
 



    7. Analysis 

 
Figure 3. A graph showing the count of each singular value versus the relative pixel intensity 

representation of each value (3) . 
 

After converting the image to a matrix where elements represent pixel intensity at each 
location in the image, we then want to determine which singular values contain relevant 
information with regards to the image. From the graph above, we can determine that the 
first 20 or so singular values contain a vast majority of the information about the image 
matrix, which means it would create a decent representation of the original image. 

 
 
 
 
 



 
Figure 4. A graph showing the percentage of information contained by a given number of 

singular values (3) . 
 

If we want a more detailed way to choose a rank value, we can plot the cumulative 
percentage that shows how much information each singular value contains. Notice that at 
roughly 60 singular values we can obtain 90% of the information in the original image. 
We can sample different ‘rank’ values to show the relative image quality for each, like 
what was shown above. 

 
    8. Conclusion 

Even with the drastic decreases in the cost of traditional hard drive storage over the last 
century, it is still important that we utilize the space we have available in the best possible 
manner. In the case of image storage and many other common file types we can achieve 
this goal by using some sort of compression method to reduce the overall size of the 
image or file. Sometimes, like in the case of SVD image compression, this results in a 
loss of information in the image to effectively trade quality for file size. The benefit here 
is that SVD image compression allows for the user to specify the rank of the resulting 



decomposition which is useful for achieving the desired ratio. Amongst many other 
things, linear algebra has found a way into most parts of our lives and ultimately provides 
many useful tools for problems similar to this one. 
 

     9. Notes 
The source code to produce the SVD images and graphs can be found under resource  (3) 
below, as cited where used above. In order to run the code on different images, simply 
have an image in the same directory and change the filename on line 1 of the compress.m 
file. 
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