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Linear Algebra and Singular Value Decomposition

As Computer  Science and technology change dramatically, we are faced with the 

situation  to  deal  with  enormous  big  data  frequently  than  before.  Especially,  computer 

graphics  and image such as  picture  became more  realistic  and the  quality  has  improved 

greatly, and it eventually leads the data to requires a large capacity. Therefore, in order to deal 

with such a big data, people figured out several methods to compress the data. In  this 

project, we will be discussing how Linear algebra can affect reducing the size of data and 

compression of images. Furthermore, how singular value decomposition (SVD) technique is 

extensively used in image compression process resulting in saving computer’s capacity.

All  the  images  are  made  up  of  millions  of  pixels  by  matrix  form.  An  image  of 

resolution m x n is represented as a matrix of values. For example, if we have a 16-megapixel 

gray-scale image it means 4000 x 4000 pixels (matrix). Every each pixel has a different level 

of black and white color, given by integer number between 0 to 255. Number 0 representing 

black color and 255 representing white color.

Singular Value Decomposition (SVD) 

 SVD method provides stable compression and a clear indication of linear algebra as 

an image compression tool. Image compression uses a low-rank approximation on the single 



value decomposition. The SVD formula of the m x n matrix is as follows.

A = U∑VT

U: m x m Orthogonal matrix (AAT = U(∑∑T)UT)

V: n x n Orthogonal matrix (AT A = V(∑T∑)VT)

∑: m x n Rectangular diagonal matrix

In this case, the eigenvalues of AAT and AT A are both non-negative and non-zero 

eigenvalues are equal. The eigenvalues must be greater than or equal to 0 so that square root  

can be implanted and if they are the same, they can be expressed as matrix ∑.

Using the SVD method, it can write an n x n invertible matrix A as:

A = U∑VT =  (U1, U2, …… Un) [
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Reduced SVD and matrix approximation

The decomposition of a matrix m x n A into SVD as shown below is called full SVD 

(m > n). 



However, it is rare to use full SVD currently and it is common to use reduced SVD as 

shown in the figure below (assuming r = non-zero, s = n singular values, t < r).

Thin SVD:

Compact SVD:

Truncated SVD:

In thin SVD, it removes the part consisting of zeros from the diagonal part in ∑ and 

removes the corresponding column vector in U. Compact SVD eliminates all the singular 

values as well as the non – diagonal elements. Both two methods can be easily confirmed that 

the calculated matrix A is the same as the original matrix A. However, in the case of truncated 

SVD, a singular value(non-zero) is also removed and the original A is not preserved but an 

approximate matrix A’ comes out. The truncated SVD matrix A’ is a rank t matrix minimizing 

the matrix ||A-A’|| and it can be used for data compression.



Data Compression

As an example  of  data  compression,  we can compress  the  following 768 x 1024 

image into SVD.

First, set 768 x 1024 matrix A having pixel values of the image as element values and 

get  an approximate matrix  A’ by using truncated SVD method.  Through the method,  the 

image (approximate matrix A’) has a different compression ratio depending on the value of t.

    

                   <Output for t = 70>                        <Output for t = 10>

To represent the original image, it needs 768 * 1024 = 786432 memory. When t = 10, 

the  compression  rate  is  17930  /  786432  *  100  =  2.28%  since  768*10(U)  +  10(∑)  + 

1024*10(V) = 17930. As we can see the image quality is not good, but it indicates that data 

approximation A’ through truncated SVD is catching the original data core.



Conclusion

There are several methods to compress data, but I think singular value decomposition 

(SVD) is the simplest and most reliable method that is utilized in many. It has the benefit of 

providing a decent compression ratio and provides stable and easier ways to split the image 

matrix into a set of linearly independent matrices. However, the results are from using a black 

and white image, and It would be interesting to see a result that how full-color image affect  

SVD compression method. 
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