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Simple Ecosystem Analysis Using Linear Algebra 

 

Introduction 

One of the many possible applications of linear algebra is the potential for analysis of an 

ecosystem. This can be done by creating or obtaining a food web from an ecosystem and then 

constructing an adjacency matrix from the food web. From this adjacency matrix, characteristics 

about an ecosystem can be mathematically determined. One such characteristic is which species 

are relatively critical to an ecosystem and which species have a degree of safety if one of their 

feeding options goes extinct. Structural diversity can also be calculated when looking to compare 

ecosystems. 

 

A Basic Analysis of a Simple Ecosystem 

For this paper, a simple adjacency matrix will be calculated from a simplified food web 

of the Great Salt Lake to be used as an example. In this simplified ecosystem, phytoplankton 

feeds brine shrimp, cyanobacteria feeds brine flies; brine flies and brine shrimp are both eaten by 

corixidae, and birds consume brine shrimp, brine flies, and corixidae. The environment is also 

involved which includes dead matter, nutrients in the water, sunlight, etc. The environment 

“feeds”  phytoplankton and cyanobacteria and the environment is “fed” by the death of every 

species. The food web of such can be represented as below, where the numbers next to each 

species will be used to represent the species’ row/column in the adjacency matrix. 

 

 

 

 

 

 



Several matrices can be created based on the food web above. Matrix M0 represents a 

symmetric matrix that simply shows the connections between species. A 1 in the i,j spot in M 

indicates that the two species are connected - one eats another. However, due to the one-way 

nature of many of the connections in this food web, matrix M1 is the adjacency matrix for the 

ecosystem with one-way predation taking into account. A 1 in the i,j spot in M1 now indicates 

that species j eats species i. However, M0 and M1 both have 1’s in every place, so M is created 

with some variance in number to indicate potential differences in relative quantities of consumed 

species. In this paper, both M and M1 will be used for various purposes. 

 

 

 

 

 

 

Some extremely basic facts about the ecosystem can be extracted from matrix M1. The 

sum of each row gives the number of species that species i eats in the food web. The sum of each 

column gives the number of species that use species j as a food source. However, this 

information is pretty rudimental and can also be easily read from the food web itself. More 

detailed information is found by more complex operations.  

The amount of potential food chains that can be created from the ecosystem can be 

calculated by simple matrix multiplication. The amount of food chains in this ecosystem is 

calculated by multiplying M1 by itself by the amount of trophic levels, 5 in this case. Then the 

last n entries of the first column are added, where n is given by the amount of species in the last 

trophic level, 1 in this case. M15 is given by: 

 

 

 

 

 



The last entry in the first column is 4, which means there are 4 food chains through the food web 

from environment to birds. 

Another statistical measure that can be obtained from the adjacency matrix of an 

ecosystem is its structural diversity. A larger number indicates a more sound ecosystem, in that a 

species could lessen in number and the ecosystem would still go on. This structural diversity is 

calculated by the dominant eigenvalue from the Perron-Frobenius theorem - the largest absolute 

value of the eigenvalues of a matrix. In the Perron-Frobenius theorem, it’s stated that as the 

values in a matrix increase, its dominant eigenvalue also increases. This is true in the sense of an 

ecosystem as well, as species have increased feeding opportunities, an ecosystem will be more 

structurally sound.  

Consider matrix M1 from above. Its dominant eigenvalue calculated by Maple is 2.043. If 

hypothetically, birds could only now consume brine shrimp, and the last row of M1 was replaced 

with <0,0,0,1,0,0,0> to form a new matrix M2, the structural diversity, and hence the dominant 

eigenvalue should decrease. This is true, and the dominant eigenvalue decreases to 1.952, as 

calculated in Maple. The eigenvalues of M1, M2, and M2’s eigenvalues are displayed below. 

 

As M1 is changed into M by the increase of selected values, the dominant eigenvalue of 

M should reflect that increase. As mentioned earlier, the dominant eigenvalue of M1 is 2.043. 

The increased values lead matrix M’s dominant eigenvalue to become 3.641, a greater structural 

diversity. M’s eigenvalues are displayed below. 



Associated with dominant eigenvalues are dominant eigenvectors. Given an nxn matrix 

A, and a nx1 vector x with every element being 1, Amx is a vector whose components are in the 

same ratio as the dominant eigenvector as m approaches infinity. In the dominant eigenvector of 

an ecosystem such as the ones analyzed in this paper, the values relative to each other show the 

relative feeding opportunities of the species. The dominant eigenvector for M is displayed below; 

with the 7th component set as 1, the other components show the relative feeding opportunities 

for the other species. This vector shows that birds have about 10 times the feeding opportunities 

as corixidae, and about twice as many feeding opportunities as the environment. 

 

Limitations and Potential for Further Analysis 

Due to data constraints, the analysis of the Great Salt Lake ecosystem was extraordinarily 

simplified in this paper. For example, relative quantities such as 5 and 10 were used in matrix M, 

when in reality the actual quantities of how much of each species is consumed by another likely 

differs greatly. The top trophic level was also just defined as being Birds, when in reality, there 

are many different species of birds that live in the Great Salt Lake, and many that just visit as 

well. By separating birds into the different species, a more complex and accurate analysis could 

be performed. 

This analysis was also simplified by simply using adjacency matrices representing 

quantities for consumption and food chains, and there is a lot more potential than what was 

shown here. For example, rather than quantity consumed, the matrices could hold data such as 

energy or concentrations of chemicals such as pesticides like DDT, and examine the upwards 

flow of those. 

The Perron-Frobenius theorem also has numerous other applications including its use in 

web search algorithms and ranking of football teams.  
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Maple commands: 

M1:=<0,1,1,0,0,0,0|1,0,0,1,0,0,0|1,0,0,0,1,0,0|1,0,0,0,0,1,1|1,0,0,0,0,1,1|1,0,0,0,0,0,1|1,0,0,0,0,0,0

>; 

M:=<0,1,1,0,0,0,0|1,0,0,5,0,0,0|1,0,0,0,5,0,0|1,0,0,0,0,1,10|1,0,0,0,0,1,10|1,0,0,0,0,0,1|1,0,0,0,0,0,

0>; 

M0:=<0,1,1,1,1,1,1|1,0,0,1,0,0,0|1,0,0,0,1,0,0|1,1,0,0,0,1,1|1,0,1,0,0,1,1|1,0,0,1,1,0,1|1,0,0,1,1,1,0

>; 

 


