Electrical Circuits
 Ariel Baughman
 MATH 2270-2

Abstract

I will use the applications of linear algebra to find the current and voltage along with the relationship in complex electrical circuits. By using Ohm's law and Kirchoff's Law, a matrix can be created to find voltage and currents. Linear Algebra can be a useful tool in simplifying several Physics equations into one simple matrix, showing the input currents and final voltages.

Draft Summary

Kirchoff's Voltage Law states that for any closed loop in a circuit, the algebraic sum of all the voltages around the loop equal zero. By setting up a matrix with correlating voltges and making the last column in the matrix zero, the matrix can be manipulated to find the Circuit Current (I).

$\mathrm{Vs}=\mathrm{IR} 1+\mathrm{IR} 2$
$=I(R 1+R 2)$
$\mathrm{I}=\mathrm{VS} /(\mathrm{R} 1+\mathrm{R} 2)$

The matrix can be used for 2 loops or more complicated loops similiar to the one below.

Once the matrices are set up, we'll find the Circuit current in each network using simple Row Reduction in Maple.

