Image Compression with Haar Wavelets

Adam Lee
April 18, 2017

University of Utah

Image Compression Process

- Separate an image into 8×8 sub-matrices, A_{i}.
- Build an orthonormal basis, U, from the Haar matrix.
- Perform the Haar transform on each sub-matrix, $B_{i}=U^{-1} A_{i} U$.
- Set elements of B_{i} to 0 with a threshold value, ϵ.
- Reverse the transform and rebuild the image.

General Haar Matrix

The $2 n \times 2 n$ Haar matrix is defined to be

$$
H_{2 n}=\left[\begin{array}{c}
H_{n} \otimes[1,1] \\
I_{n} \otimes[1,-1]
\end{array}\right],
$$

where \otimes is the Kronecker product and I_{n} is an $n \times n$ identity matrix.

$$
H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], H_{4}=\left[\begin{array}{cc}
1[1,1] & 1[1,1] \\
1[1,1] & -1[1,1] \\
1[1,-1] & 0[1,-1] \\
0[1,-1] & 1[1,-1]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

8×8 Haar Matrix

$$
H_{8}=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] .
$$

Let $H_{8}^{\top}=\left[\begin{array}{llll}\mathbf{h}_{1} & \mathbf{h}_{2} \ldots & \mathbf{h}_{8}\end{array}\right]$. Notice that $\mathbf{h}_{i} \cdot \mathbf{h}_{j}=0$ for all $i \neq j$. In other words, the columns of H_{8}^{\top} are pairwise orthogonal.

Orthonormal Basis

We can build an orthonormal basis, U, by simply normalizing the columns of H_{8}^{\top}. Hence,

$$
\begin{aligned}
U & =\left[\begin{array}{cccccccc}
\frac{\mathbf{h}_{1}}{\left\|\mathbf{h}_{1}\right\|} & \frac{\mathbf{h}_{2}}{\left\|\mathbf{h}_{2}\right\|} & \cdots & \frac{\mathbf{h}_{8}}{\left\|\mathbf{h}_{8}\right\|}
\end{array}\right] \\
& =\left[\begin{array}{cccccccc}
\frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & \frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\
\frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & \frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & 0 & 0 & 0 \\
\frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & -\frac{1}{2} & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \\
\frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & -\frac{1}{2} & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 & 0 \\
\frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & \frac{1}{2} & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & \frac{1}{2} & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & -\frac{1}{2} & 0 & 0 & 0 & -\frac{\sqrt{2}}{2}
\end{array}\right]
\end{aligned}
$$

Since the columns of U are orthonormal and U is square, it follows that $U U^{\top}=U^{\top} U=I$, i.e. $U^{-1}=U^{\top}$.

Haar Transform

With a sub-matrix, A, and the orthonormal basis, U, we can now perform the Haar transform. The transform is defined as, $B=U^{-1} A U$ with elements $b_{i, j}$.

- Set elements, $b_{i, j}$, of B to 0 to compress the image.
- If the absolute value of an element, $b_{i, j}$, is less than a chosen ϵ, the element is set to 0 .
- Let \hat{B} be the matrix that follows this condition,

$$
\hat{B}=\left\{b_{i, j} \in B| | b_{i, j} \mid<\epsilon \Longrightarrow b_{i, j}=0\right\} .
$$

Reverse the Haar Transform

To finish the image compression we need to reverse the Haar transform on \hat{B}.

$$
\begin{aligned}
\text { Recall, } B & =U^{-1} A U \\
\text { Then, } U B U^{-1} & =U U^{-1} A U U^{-1} \\
& =I A I \\
& =A
\end{aligned}
$$

Thus, $\hat{A}=U \hat{B} U^{-1}$
Rounding the elements of \hat{A} to unsigned integers completes the process.

Examples

Examples (continued)

$\epsilon=50(29.9 \mathrm{kB})$
$\epsilon=100(21.2 \mathrm{kB})$

