Image Compression with Haar Wavelets

Adam Lee April 18, 2017

University of Utah

- Separate an image into 8×8 sub-matrices, A_i .
- Build an orthonormal basis, U, from the Haar matrix.
- Perform the Haar transform on each sub-matrix, $B_i = U^{-1}A_iU.$
- Set elements of B_i to 0 with a threshold value, ϵ .
- Reverse the transform and rebuild the image.

The $2n \times 2n$ Haar matrix is defined to be

$$H_{2n} = \begin{bmatrix} H_n \otimes [1,1] \\ I_n \otimes [1,-1] \end{bmatrix},$$

where \otimes is the Kronecker product and I_n is an $n \times n$ identity matrix.

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \ H_4 = \begin{bmatrix} 1[1,1] & 1[1,1] \\ 1[1,1] & -1[1,1] \\ 1[1,-1] & 0[1,-1] \\ 0[1,-1] & 1[1,-1] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Let $H_8^{\mathsf{T}} = [\mathbf{h}_1 \ \mathbf{h}_2 \ \dots \ \mathbf{h}_8]$. Notice that $\mathbf{h}_i \cdot \mathbf{h}_j = 0$ for all $i \neq j$. In other words, the columns of H_8^{T} are pairwise orthogonal.

Orthonormal Basis

We can build an orthonormal basis, U, by simply normalizing the columns of H_8^{T} . Hence,

$$U = \begin{bmatrix} \frac{\mathbf{h}_{1}}{\|\mathbf{h}_{1}\|} & \frac{\mathbf{h}_{2}}{\|\mathbf{h}_{2}\|} & \dots & \frac{\mathbf{h}_{8}}{\|\mathbf{h}_{8}\|} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & \frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0\\ \frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & \frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & 0 & 0\\ \frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & -\frac{1}{2} & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0\\ \frac{\sqrt{8}}{8} & \frac{\sqrt{8}}{8} & -\frac{1}{2} & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 & 0\\ \frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & \frac{1}{2} & 0 & 0 & \frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & \frac{1}{2} & 0 & 0 & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{8}}{8} & -\frac{\sqrt{8}}{8} & 0 & -\frac{1}{2} & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

Since the columns of U are orthonormal and U is square, it follows that $UU^{\mathsf{T}} = U^{\mathsf{T}}U = I$, i.e. $U^{-1} = U^{\mathsf{T}}$.

With a sub-matrix, A, and the orthonormal basis, U, we can now perform the Haar transform. The transform is defined as, $B = U^{-1}AU$ with elements $b_{i,j}$.

- Set elements, $b_{i,j}$, of B to 0 to compress the image.
- If the absolute value of an element, $b_{i,j}$, is less than a chosen ϵ , the element is set to 0.
- Let \hat{B} be the matrix that follows this condition,

$$\hat{B} = \left\{ \left. b_{i,j} \in B \right| \ \left| \left. b_{i,j} \right| < \epsilon \implies b_{i,j} = 0 \right. \right\}.$$

To finish the image compression we need to reverse the Haar transform on $\hat{B}.$

Recall,
$$B = U^{-1}AU$$

Then, $UBU^{-1} = UU^{-1}AUU^{-1}$
 $= IAI$
 $= A$
Thus, $\hat{A} = U\hat{B}U^{-1}$

Rounding the elements of \hat{A} to unsigned integers completes the process.

Examples

 $\epsilon = 0$ (64.9 kB)

 $\epsilon = 25 \; (42.2 \; \text{kB})$

Examples (continued)

 $\epsilon = 100 \ (21.2 \text{kB})$

 $\epsilon = 50 (29.9 \text{ kB})$