
Math 2270-2 Spring 2012

Computer Lab 5: Web Search

The original version of this lab was written by Professor Chris Cashen in his Postdoc years at Utah. More
figures and longer explanations were added in April 2012. Cashen’s original Sample Network is used for the
calculation and the answer set for the lab remains unchanged.

Submit your project on the due date in class as a worksheet print. Submit study group efforts as one
worksheet print with multiple names.

See Section 6.7 of the text for problem background.

1 Introduction

Suppose B is an n × n matrix with real eigenvalues λ1 > λ2 > · · · > λn. Denote the n eigenpairs by
(λ1, ~v1), (λ2, ~v2), . . . , (λn, ~vn).

The n vectors ~v1, . . . , ~vn are independent and span Rn, therefore for each ~w ∈ Rn there are unique constants
c1, . . . , cn such that

~w = c1~v1 + · · ·+ cn~vn.

We verify that B~v1 = λ1~v1 implies

B2~v1 = B(B~v1) = B (λ1~v1) = λ1B (~v1) = λ21~v1.

Similarly, B3~v1 = λ31~v1, and in general Bk~v1 = λk1~v1. The same holds for any other eigenpair. Then

Bk ~w = c1λ1B
k~v1 + · · ·+ cnλnB

k~vn
= c1λ

k
1~v1 + · · ·+ cnλ

k
n~vn

= λk1

(
c1~v1 +

(
λ2
λ1

)k
c2~v1 + · · ·+

(
λn
λ1

)k
cn~vn

)
≈ λk1c1~v1 as k →∞.

In other words, the sequence ~w,B ~w,B2 ~w,B3 ~w, · · · approaches multiples of the leading eigenvector ~v1. If ~v is
Bk ~w for large k, then we expect B~v ≈ λ1~v. Take norms across this equation and solve for the lead eigenvalue:

λ1 ≈
‖B~v‖
‖~v‖

.

We have found an approximate eigenpair (λ1, ~v), obtained without trying to compute roots of the characteristic
polynomial of B.

Web Search Engine

Section 6.7 of Strang’s textbook uses this approach to model an internet search engine. Let s1, . . . , sn be a
list of web sites. Let L = (li j) be the incidence matrix that records links between the web sites: li j = 1 if site

1

si links to site sj , and li j = 0 otherwise. By swapping rows and columns, the i j entry of the transpose LT is
1 if sj links to si and zero otherwise.

There are two ways that a web site can be important, and therefore worthy of a top listing in the search
engine.

authority. A site s is an authority if many other sites link to s.
hub site. A site s is a hub if s links to many other sites.

Ranking a Web Site

Initially, the ranking of a web site s is a simple count, defined as follows.

a0i = the count of the number of sites s that link to site si
= sum of row i elements in incidence matrix LT ,

h0i = the count of the number of sites s to which si links
= sum of row i elements in incidence matrix L.

Then a0i is the authority ranking of site si and h0i is the hub ranking of site si.

s402

s300

s7

s5

Authority

s1

Five sites link to s1,
which means a01 = 5.

s5000

s607

s220

s70

s40

Hub Site

s1

Site s1 links to four sites,
which means h0

1 = 4.

Define vectors

~a0 =


a01
a02
a03

...

 , ~h0 =


h01
h02
h03

...

 .

2

The number of links and also the quality of the links determines the importance of a site. We use an iterative
method to determine the site rankings, denoted

Authority: ~a0,~a1,~a2, . . . ,

hub: ~h0,~h1,~h2,

The initial authority rankings and the initial hub rankings are computed using the incidence matrix L.

~a0 = LT~1
~h0 = L~1

~1 =


1
1
...
1

 .

This works because row(L, i)~1 = sum of the elements in row i of L. This counts outgoing links from a hub,
while row(LT , i)~1 = sum of elements in row i of LT is the count of the number of incoming links to an
authority.

The initial authority ranking of a the site si is given by the i–th component of ~a0. However, this ranking only
counts links, but does not consider link quality. A site is a better authority if the incoming links are from
important hubs, rather than from random sites. We improve the authority rankings by taking into account
the hub ranking ~h0. Instead of adding up all the incoming links to si, instead we weight them by ~h0. This is
why we define the next iteration to rank an authority by the equation ~a1 = LT~h0.

Similarly, hubs are more important if they have many links to good authorities, so we define the next iteration
to rank a hub by the equation ~h1 = L~a0.

We continue in this way to improve the rankings based on the rankings of the previous step and define by
iteration the hub and authority rankings by the equations

~hi+1 = L~ai

~ai+1 = LT~hi

Compute new equations for the iterates as follows.

~h4 = L~a3

= (LLT)~h2

= (LLT)L~a1

= (LLT)2~h0,
and in general

~h2k = (LLT)k~h0.

Similarly

~a4 = LT~h3

= (LTL)~a2

= (LTL)LT~h1

= (LTL)2~a0,
and in general

~a2k = (LTL)k~a0.

The rankings we want are:

~h equals the leading eigenvector of LLT and
~a equals the leading eigenvector of LTL.

3

1

2

3

4

5

7

6

2 A Sample Network

Above is a model of a network representing several web sites.

Problem 1. Compute the incidence matrix L from the diagram.

Please verify this matrix.

For example, 2 --> 1, 6 --> 1, 7 --> 1, which implies col(L,1)=Vector([0,1,0,0,0,1,1]).

L := <

<0, 1, 0, 0, 0, 1, 1>|

<1, 0, 1, 1, 0, 1, 0>|

<0, 0, 0, 1, 0, 0, 1>|

<0, 0, 0, 0, 0, 0, 1>|

<0, 0, 0, 1, 0, 1, 1>|

<0, 0, 0, 0, 0, 0, 1>|

<1, 0, 0, 0, 1, 0, 0>>;

Problem 2. Compute the rankings as follows:

interface(displayprecision = 2,rtablesize=25): with(LinearAlgebra):

Compute the iterates a[0] to a[19] and h[0] to h[19].

fix:=x->Normalize(x,inplace):

Ones:=Vector(7,1):

h[0] := L.Ones; fix(h[0]);

a[0] := Transpose(L).Ones; fix(a[0]);

h[1] := L.a[0]; fix(h[1]);

a[1] := Transpose(L).h[0]; fix(a[1]);

for i from 2 to 19 do h[i] := L.Transpose(L).h[i-2]; fix(h[i]); end do:

for i from 2 to 19 do a[i] := Transpose(L).L.a[i-2]; fix(a[i]); end do:

Do 10 iterations to find approximate eigenvectors for L^TL and LL^T.

H := <h[0] | h[1]>: for i from 2 to 9 do H := <H | h[i]>; end do:

A := <a[0] | a[1]>: for i from 2 to 9 do A := <A | a[i]>; end do:

The command Normalize(v,inplace) takes a vector v and replaces it by a vector in the same direction
whose largest component is 1. This is done by dividing the vector v by c = max(v1, . . . , v7).

4

Observe how the rankings change at each step by considering the matrices H and A. These matrices will
contain fractions. It is easier to interpret H and A by using decimals instead of fractions:

A7by10:=evalf(A);

H7by10:=evalf(H);

The last column of each matrix is an eigenvector approximation.

Problem 3. Compute approximate eigenvectors ~h and ~a from these matrices, using ~h = col(A, 10) and
~a = col(A, 10).

Approximate eigenvectors are the last columns of the two matrices A,H.

v1:=Column (A,10): v2:=Column (H,10): evalf(v1),evalf(v2);

Problem 4. Calculate the length of LLT~h and the length of ~h, then divide to estimate the leading eigenvalue
λ2 of LLT . Repeat for LTL~a and ~a to estimate the leading eigenvalue λ1 of LTL. This idea comes from the
eigenpair relation

A~v = λ~v

which implies for λ > 0 the equation

λ =
‖A~v‖
‖~v‖

.

Compute eigenvalue lambda2 for v2.

ans2:=L.Transpose(L).v2;

lambda2:=Norm(ans2)/Norm(v2);

Compute eigenvalue lambda1 for v1.

ans1:=Transpose(L).L.v1;

lambda1:=Norm(ans1)/Norm(v1);

Problem 5. Verify that ~h is approximately an eigenvector for LLT by computing LLT~h− λ2~h. It should be
nearly the zero vector. Repeat to verify ~a is approximately an eigenvector of LTL by computing LTL~a−λ1~a,
which again should be nearly the zero vector.

Verify eigenpair (lambda2,v2)

evalf(ans2-lambda2*v2);

eigenpair (lambda2,v2) verified, if it is nearly zero.

Verify eigenpair (lambda1,v1)

evalf(ans1-lambda1*v1);

eigenpair (lambda1,v1) verified, if it is nearly zero.

Problem 6. Is the site with the most incoming links the best authority? Is the site with the most outgoing
links the best hub?

5

