Some Maple, MuPad and Matlab Examples

Creating a Matrix
The matrix $A=\left(\begin{array}{lll}2 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ will be used as an example.

```
A:=Matrix([[2,2,3],[4,5,6],[7, 8, 9]]); Create matrix A in Maple.
A:=matrix([[2,2,3],[4,5,6], [7,8,9]]); Create matrix A in MuPad.
A=[2 2 3; 4 5 6; 7 8 9] Create matrix A in Matlab.
```

Variable assignment uses $:=$ in Maple and MuPad, whereas $\#$ is used in Matlab. The assignment creates a new symbol which is shorthand for the assignment, useful when you plan on using the matrix again. Uses are illustrated below.
The examples assume that two 3×3 matrices are stored into variables A and B.

Reduced Row Echelon Form
Maple: linalg[rref] (A);
MuPad: linalg::gaussJordan(A);
Matlab: rref(A)
Inverse Matrix
Maple: A $^{\wedge}(-1)$; or $1 / A$;
Maple: $\mathrm{A}^{\wedge}(-1)$; or $1 / \mathrm{A}$;
MuPad: $\mathrm{A}^{\wedge}(-1)$ or $\operatorname{inv}(\mathrm{A})$
Evaluate a Determinant
Maple: linalg[det] (A) ;
MuPad: linalg:: $\operatorname{det}(\mathrm{A})$;
Matlab: $\operatorname{det}(A)$

Multiply two matrices A and B
Maple: A.B
MuPad: A*B
Matlab: A*B
Augment Matrices A and B
Maple: $\langle\mathrm{A} \mid \mathrm{B}\rangle$
MuPad: A.B
Matlab: [A B]
Create an $n \mathrm{x} n$ identity matrix
Maple: Matrix(n,n,shape=identity);
MuPad: matrix::identity(n);
Matlab: eye(n)

The Maple command with(linalg) : issued just once in your Maple document allows linalg[rref] (A) to be shortened to rref (A); Maple package LinearAlgebra is a richer package replacement for linalg.
Maple Package Equivalents
linalg[det] and LinearAlgebra[Determinant]
linalg[rref] and LinearAlgebra[ReducedRowEchelonForm]

