[> \# Maple Lab 6: Fibonacci and Lucas Sequences [> with(LinearAlgebra):

Problem 1.

Define $\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$. Using Maple, compute A^{5} and use it to find vector \mathbf{u}_{5} and then find Fibonacci number y_{5}.
> y0:=0:y1:=1:A:=<0,1|1,1>;u0:=<y0,y1>;<y5,y6>=(A^5).u0;

$$
\begin{align*}
& A:=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \\
& u 0:=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{l}
y 5 \\
y 6
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right]} \tag{1}
\end{align*}
$$

Problem 2.

Show that the eigenvalues of matrix A are $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{5}}{2}$ by solving the characteristic equation of A .
[> chareq:=CharacteristicPolynomial(A,lambda);
lambda1,lambda2:=solve(chareq,lambda);

$$
\begin{gather*}
\text { chareq }:=\lambda^{2}-\lambda-1 \\
\lambda 1, \lambda 2:=\frac{1}{2} \sqrt{5}+\frac{1}{2}, \frac{1}{2}-\frac{1}{2} \sqrt{5} \tag{2}
\end{gather*}
$$

Problem 3.

Show that $\left[\begin{array}{c}-\lambda_{2} \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-\lambda_{1} \\ 1\end{array}\right]$ are eigenvectors of A corresponding to λ_{1} and λ_{2} respectively.
Computations will use $\lambda_{1}+\lambda_{2}=1$ and $\lambda_{1} \lambda_{2}=-1$.
[> \# AP=PD verifies the eigenpairs. Check with Eigenvectors(A);
> P:=<-lambda2,1|-lambda1,1>;DD:=<lambda1,0|0,lambda2>;

$$
P:=\left[\begin{array}{cc}
-\frac{1}{2}+\frac{1}{2} \sqrt{5} & -\frac{1}{2} \sqrt{5}-\frac{1}{2} \\
1 & 1
\end{array}\right]
$$

$$
D D:=\left[\begin{array}{cc}
\frac{1}{2} \sqrt{5}+\frac{1}{2} & 0 \tag{3}\\
0 & \frac{1}{2}-\frac{1}{2} \sqrt{5}
\end{array}\right]
$$

=> simplify(A.P-P.DD); \# AP=PD verifies the eigenpairs

$$
\left[\begin{array}{ll}
0 & 0 \tag{4}\\
0 & 0
\end{array}\right]
$$

Problem 4.

A 2×2 matrix A is defined to be diagonalizable provided it has 2 eigenpairs. Explain why A is diagonalizable, by exhibiting the 2 eigenpairs.
[> \# TO DO: Compute eigenpairs. See problem 3 code.
[> \# TO DO: Explain why A is diagonalizable.

Problem 5.

A diagonalizable matrix A satisfies the equation $A P=P D$ where D is a diagonal matrix of eigenvalues and P is the augmented matrix of corresponding eigenvectors (D and P are not unique). Use the results of Problem 4 to find an invertible matrix P and a diagonal matrix D for which $A=P$ $D P^{-1}$.
[> \# Use AP=PD diagonalization theory from the textbook.

Problem 6.

[Use Maple to calculate D^{10}, then use it to find $\mathrm{A}^{10}=P D^{10} P^{-1}$, vector \mathbf{u}_{10}, and Fibonacci number y_{10}. Confirm your result for y_{10} by writing out the Fibonacci sequence by hand and then consulting Wikipedia. In the solution, explain in detail why $\mathrm{A}^{10}=P D^{10} P^{-1}$.
[> P:=<-lambda2,1|-lambda1,1>; DD:=<lambda1,0|0,lambda2>;
> DD^10; <y10,y11> = simplify(P . DD^10.(1/P) . u0);

$$
\left[\begin{array}{cc}
{\left[\frac{1}{2} \sqrt{5}+\frac{1}{2}\right)^{10}} & 0 \\
0 & \left(\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)^{10}
\end{array}\right]
$$

[> \# AP=PD explains why A^10 = P D^10 (1/P)

Problem 7.

[A formula for y_{k} may be derived using the preceding two problems. Use aleady derived expressions

Lfor P, D, and A^{k} to obtain the formula for $\mathrm{k}=1,2,3, \ldots$
[> Ak:=1/sqrt(5) *Matrix (2,2, [[lambda[2]^k*lambda[1], Iambda [2]^(k+1)*lambda[1]-lambda[1]^(k+1)*Iambda[2]], [lambda[1]^klambda[2]^k, lambda[1]^(k+1)-lambda[2]^(k+1)]]): print(Ak);

$$
\left.\begin{array}{cc}
\frac{1}{5} \sqrt{5} \lambda_{2}^{k} \lambda_{1} & \frac{1}{5} \sqrt{5}\left(\lambda_{2}^{(k+1)} \lambda_{1}-\lambda_{1}^{(k+1)} \lambda_{2}\right) \\
\frac{1}{5} \sqrt{5}\left(\lambda_{1}^{k}-\lambda_{2}^{k}\right) & \frac{1}{5} \sqrt{5}\left(\lambda_{1}^{(k+1)}-\lambda_{2}^{(k+1)}\right) \tag{6}
\end{array}\right]
$$

$\left[\begin{array}{l}\text { \# TO DO: Reformulate } P \text {, DD with symbols } c, d \text {. Then compute } \\ \text { \# power k of } A \text { from the formula } A P=P D \text {. }\end{array}\right.$

Problem 8.

[Use the result of Problem 7 to find vector \mathbf{u}_{k} and Fibonacci number y_{k}. Simplifications use $\mathrm{cd}=$ $\lambda_{1} \lambda_{2}=-1$. The answer should be
[> u0 := Vector($2,[1,1]$):
uk: $=\mathrm{Ak} . \mathrm{uO}$:
yk: $=\mathrm{uk}[1]$:
yk;
$y_{k}=\frac{1}{\sqrt{5}}\left(\lambda_{1}^{k}-\lambda_{2}^{k}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right)$
Calculate Fibonacci number y_{10} using this formula, and compare your result to that of Problem 6.

Problem 9.

[The second eigenvalue λ_{2} is less than 1 in absolute value, therefore term λ_{2}^{k} will approach zero as k approaches infinity. The following approximate equation results for the $k^{t h}$ Fibonacci number:

$$
y_{k} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}
$$

Use this approximation to approximate $\frac{y_{k+1}}{y_{k}}$.

Problem 10.

Consider the Lucas sequence generated by the difference equation
$y_{k+2}=3 y_{k+1}-2 y_{k}$
with $y_{0}=0$ and $y_{1}=1$. Write out by hand the first seven terms of this sequence and see if you can find the pattern. Then apply eigenanalysis, as was done for the Fiboanacci sequence, to find a formula for y_{k}

Problem 11.

Consider the Lucas sequence generated by the difference equation
$y_{k+2}=2 y_{k+1}-y_{k}$
with $y_{0}=0$ and $y_{1}=1$. Find the pattern by writing out as many terms in the sequence as you need.
Will the Fibonacci sequence analysis work in this case? Why or why not? Consult the Wikipedia page on the Lucas Sequence for a solution formula.

