Linear Algebra 2270-2 Due in Week 9

The ninth week finishes chapter 4 and starts the work from chapter 5. Here's the list of problems, problem notes and answers.

- Section 4.4. Exercises 3, 7, 9, 13, 27
- Section 4.5. Exercises 5, 7, 11, 13, 21
- Section 4.6. Exercises 1, 3, 5, 7, 15, 21
- **Extra Credit Problem week9-1.** Define a function T from \mathcal{R}^n to \mathcal{R}^m by the matrix multiply formula $T(\vec{x}) = A\vec{x}$. Prove that for all vectors \vec{u}, \vec{v} and all constants c, (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$, (b) $T(c\vec{u}) = cT(\vec{u})$. Definition: T is called a linear transformation if T maps \mathcal{R}^n into \mathcal{R}^m and satisfies (a) and (b).
- **Extra Credit Problem week9-2.** Let T be a linear transformation from \mathcal{R}^n into \mathcal{R}^n that satisfies $||T(\vec{x})|| = ||\vec{x}||$ for all \vec{x} . Prove that the $n \times n$ matrix A of T is orthogonal, that is, $A^T A = I$, which means the columns of A are orthonormal:

 $\operatorname{col}(A, i) \cdot \operatorname{col}(A, j) = 0$ for $i \neq j$, and $\operatorname{col}(A, i) \cdot \operatorname{col}(A, i) = 1$.

Extra Credit Problem week9-3. Let T be a linear transformation given by $n \times n$ orthogonal matrix A. Then $||T(\vec{x})|| = ||\vec{x}||$ holds. Construct an example of such a matrix A for dimension n = 3, which corresponds to holding the z-axis fixed and rotating the xy-plane 45 degrees counter-clockwise. Draw a 3D-figure which shows the action of T on the unit cube $S = \{(x, y, z) : 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$.

Problem Notes

Extra Credit Problem week9-1. Write out both sides of identities (a) and (b), replacing $T(\vec{w})$ by matrix product $A\vec{w}$ for various choices of \vec{w} . Then compare sides to finish the proof.

Extra Credit Problem week9-2. Equation $||T(\vec{x})|| = ||\vec{x}||$ means lengths are preserved by T. It also means $||A\vec{x}|| = ||\vec{x}||$, which applied to $\vec{x} = \operatorname{col}(I, k)$ means $\operatorname{col}(A, k)$ has length equal to $\operatorname{col}(I, k)$ (=1). Write $||\vec{w}||^2 = \vec{w} \cdot \vec{w} = \vec{w}^T \vec{w}$ (the latter a matrix product). Then write out the equation $||A\vec{x}||^2 = ||\vec{x}||^2$, to see what you get, for various choices of unit vectors \vec{x} .

Extra Credit Problem week9-3. The equations for such a transformation can be written as plane rotation equations in x, y plus the identity in z. They might look like $x' = x \cos \theta - y \sin \theta, y' = \text{similar}, z' = z$. Choose θ then test it by seeing what happens to x = 1, y = 0, z = 0, the answer for which is a rotation of vector (1, 0, 0). The answer for A is obtained by writing the scalar equations as a matrix equation $(x', y', z')^T = A(x, y, z)^T$.