1. (Chapter 1: 60 points) Consider the system $A \vec{u}=\vec{b}$ with $\vec{u}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$ defined by

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3}+x_{4}=2 \\
& 4 x_{1}+3 x_{2}+8 x_{3}+x_{4}=4 \\
& 6 x_{1}+3 x_{2}+8 x_{3}+x_{4}=2
\end{aligned} \Rightarrow\left[\begin{array}{llll|l}
2 & 3 & 4 & 1 & 2 \\
4 & 3 & 8 & 1 & 4 \\
6 & 3 & 8 & 1 & 2
\end{array}\right]
$$

Solve the following parts:

A (a) $[10 \%]$ Find the reduced row echelon form of the augmented matrix.
A (b) $[10 \%]$ Identify the free variables and the lead variables.
A (c) $[10 \%]$ Display a vector formula for a particular solution $\vec{u}_{p} .7\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$
A (d) $[10 \%]$ Display a vector formula for the homogeneous solution \vec{u}_{h}. $\Rightarrow t_{1}\left[\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right]$
A (e) $[10 \%]$ Identify cads of Stang's Special Solutions. $\Rightarrow\left[\begin{array}{c}0 \\ -1 / 3 \\ 0 \\ 1\end{array}\right]$
$A(f)[10 \%]$ Display the vector general solution \vec{u}, using superposition. $\Rightarrow \vec{u}=\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+u_{1}\left[\begin{array}{c}0 \\ -1 / s \\ 0 \\ 1\end{array}\right]$
a) $\left[\begin{array}{llll|l}2 & 3 & 4 & 1 & 2 \\ 4 & 3 & 8 & 1 & 4 \\ 6 & 3 & 8 & 1 & 2\end{array}\right] r_{2}-2 r_{1}-3 r_{1}\left[\begin{array}{cccc|c}2 & 3 & 4 & 1 & 2 \\ 0 & -3 & 0 & -1 & 0 \\ 0 & -6 & -4 & -2 & -4\end{array}\right] \begin{gathered}r_{1}+r_{2} \\ -\frac{1}{3} r_{2} \\ r_{3}-2 r_{2}\end{gathered}\left[\begin{array}{cccc|c}2 & 0 & 4 & 0 & 2 \\ 0 & 1 & 0 & 1 / 3 & 0 \\ 0 & 0 & -4 & 0 & -4\end{array}\right]$
$\left.r_{1}+r_{3}\right) / 2\left[\begin{array}{cccc|c}1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 / 3 & 0 \\ 0 & 0 & 1 & 0 & 1\end{array}\right]$
3) Lead var. $-x_{1}, x_{2}, x_{3}$; free var $-x_{4}$

$$
\therefore x_{1}=-1
$$

$$
x_{2}=-1 / 3 x_{4}=-1 / 3 t_{1}
$$

$$
x_{3}=1
$$

$$
x_{4}=t_{1}
$$

1) $\vec{u}_{h}=t_{1}\left[\begin{array}{c}0 \\ -1 / 3 \\ 0\end{array}\right] \quad=t 1[0,-1 / 3,0,1] \quad$ (page cut off)
2. (Chapter 2: 40 points)
(a) $[10 \% \mid$ Describe for $n \times n$ matrices two different methods for finding the matrix inverse.
(b) $[20 \%]$ Apply the two methods to find the inverse of the matrix $A=\left(\begin{array}{rr}1 & -3 \\ 0 & 2\end{array}\right)$.
(c) $[10 \%$ Find the inverse of the transpose of the matrix in part. (b).
19) (1) using $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
(2) using $(A \mid I) \sim\left(I \mid A^{-1}\right)$
(b)

$$
\left.\begin{array}{l}
\text { (1) }|A|=1 \times 2=2 \operatorname{adj} A=\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right) \therefore A^{-1}=\frac{a d j}{|A|}=\frac{1}{2}\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & \frac{3}{2} \\
0 & \frac{1}{2}
\end{array}\right. \\
\text { (2) }\left(\begin{array}{cc|cc}
1 & -3 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & -3 & 1 \\
0 \\
0 & 1 & 0 \\
\frac{1}{2}
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 1 \\
\frac{3}{2} \\
0 & 1 & 0
\end{array}\right) \frac{1}{2}
\end{array}\right) \therefore A^{-1}=\left(\begin{array}{cc}
1 & \frac{3}{2} \\
0 & \frac{1}{2}
\end{array}\right.
$$

(c)

$$
\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}=\left(\begin{array}{cc}
1 & 0 \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right)
$$

3. (Chapter 3: 30 points) Define matrix A and vector \vec{b} by the equations

$$
A=\left(\begin{array}{rrr}
-2 & 3 & 0 \\
0 & -2 & 4 \\
1 & 0 & -2
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Find the value of x_{3} by Cranmer's Rule in the system $A \vec{x}=\vec{b}$.
(Chapters 1 to 4: 30 points) Let
$\begin{aligned} & \text { Removed from the final exam. } \\ & \text { Corrections are change } R^{\wedge} 4 \text { to } \\ & \text { to } R^{\wedge} 5 \text { and text } \\ & \text { "of the matrix" to } \\ & \text { "of some matrix" }\end{aligned} \quad A=\left(\begin{array}{rrr}0 & 0 & 0 \\ -3 & -2 & -1 \\ -1 & 0 & 0 \\ 6 & 6 & 3 \\ 2 & 2 & 1\end{array}\right)$
(a) Check the independence tests below which apply to prove that the column vectors of the matrix A are independent in the vector space \mathcal{R}^{4}.
(b) Show the details for one of the independence tests that you checked.
\square Wronskian test Wronskiau of $\vec{f}_{1}, \overrightarrow{f_{2}}, \vec{f}_{3}$ nonzero at $x=x_{0}$ implies independence of $\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$.
x Rank test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their angmented matrix has rank 3.

Determinant test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent, if their square augmented matrix has nonzero determinant.
Any finite set of distinct atoms is independent.
Functions $\vec{f}_{1}, \vec{f}_{2}, \overrightarrow{f_{3}}$ are independent if a sampling matrix has nonzero determinant.
x Pivot test
Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augnented matrix A has 3 pivot columns.
\square Orthogonality test A set of monzero pairwise orthogonal vectors is independent.
x Combination test A list of vectors is independent if cach vector is not a linear combination of the preceding vectors.

Solution: Find the RREF of A. It has 2 pivots. No test applies to prove the columns are independent, because the columns of A are dependent.
5. (Chapters 2, 4: 20 points) Define S to be the set of all vectors \vec{x} in \mathcal{R}^{3} such that $x_{1}+x_{3}=x_{2}, x_{3}=0$ and $x_{3}+x_{2}=x_{1}$. Prove that S is a subspace of \mathcal{R}^{3}.

- the lector spare for all vectors \vec{x} in R^{3} that satyr fives three equity are

$$
\left\{\begin{aligned}
x_{1}-x_{2}+x_{3}=0 & \text { so S is mill span of the } 3 \times 3 \text { system on the left } \\
-x_{1}+x_{2}+x_{3}=0 & \text { Thus. } \text { is subopore of } R^{3}
\end{aligned}\right.
$$

Also possible: Apply the Kernel Theorem, which says that a system of linear homogeneous algebraic equations has solution set which is a subspace.
6. (Chapter 6: 40 points) Let S be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)
$$

Find a Gram-Schnidt orthonormal basis of S.

$$
\operatorname{Let} \vec{w}_{1}=\vec{v}_{0}
$$

$$
\vec{w}_{2}=\vec{v}_{2}-\frac{\vec{v}_{2} \vec{v}_{1}}{\vec{v}_{1} \vec{v}_{1}}
$$

$$
=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)-\frac{1+1+0+0}{1+1+1+0}\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1-\frac{2}{3} \\
1-\frac{2}{3} \\
0-\frac{2}{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right) \\
& \text { Le } \vec{u}_{1} \vec{w}_{2} \text { to get } \vec{u}_{1} \vec{u}_{2}
\end{aligned}
$$

Unitise $\overrightarrow{u_{u}} \overrightarrow{w_{2}}$ to get $\overrightarrow{u_{1}} \vec{u}_{3}$
$\vec{H}_{1} \vec{u}_{2}$ ace orthonormal basis for S

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\vec{w}_{1}}{\left|\vec{w}_{1}\right|}=\frac{1}{\sqrt{1+1+1}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{\sqrt{3}}{3} \\
0
\end{array}\right) \\
& =\frac{1}{\sqrt{\frac{1}{9}+\frac{1}{9}+\frac{4}{8}+\frac{7}{9}}}\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right)^{1} \\
& =\frac{3}{\sqrt{15}}\left(\begin{array}{c}
\frac{1}{3} \\
\frac{3}{3} \\
\frac{3}{3} \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{\sqrt{15}} \\
\frac{1}{\sqrt{5}} \\
\frac{-2}{\sqrt{\sqrt{15}}} \\
\frac{3}{\sqrt{15}}
\end{array}\right)^{\frac{-2}{3}} \begin{array}{c}
\frac{1}{3} \\
1
\end{array}
\end{aligned}
$$

7. (Chapters 1 to 6: 30 points) Let A be an $m \times n$ matrix and assume that, $A^{T} A$ has nonzero determinant. Prove that the rank of A equals n.
Since $A^{\top} A$ has non zero determinant, $A^{\top} A$ is muertible, ie $\left(A^{\top} A\right)^{+}$exist
Let \vec{x} be a vector which satisfies $A \vec{X}=\overrightarrow{0}$ (1)
(since Aismxn ix would be $n \times 1$) let muttiplyby $A^{\top} A^{\top} A \vec{x}=\vec{O}$ al
since $A^{\top} A$ has reverse $\left(A^{\top} A\right)^{-1}$ left multiply (2) by $\left(A^{\top} A\right)$

$$
\left(A^{\top} A\right)^{-1} A^{\top} A \vec{x}=0 \Rightarrow \vec{x}=0
$$

Which means the \vec{x} that sorisfind $\overrightarrow{A x}=\overrightarrow{0}$ is $\vec{x}=\overrightarrow{0}$ This means $A \vec{x}=\overrightarrow{0}$ has any twined solution, ie all whams in A arepirot columns and $m \geqslant n$.
Ie thereare n prot columns and thus rouk of A is n.
used

$$
\begin{aligned}
& \text { rank }+ \text { Nullity } y=+ \text { vans }=n \\
& \text { rank }=n \Leftrightarrow \text { null ty }=0 \Leftrightarrow \operatorname{Null}(A)=\{\overrightarrow{0}\}
\end{aligned}
$$

8. (Chapter 5: 40 points) The matrix A below has eigenvalues 3,3 and 3 . Test A to see it is diagonelizable, and if it is, then display three eigenpairs of A.

$$
A=\left(\begin{array}{rrr}
4 & 1 & 1 \\
-1 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

Thy $(A-3 I) x=0$ and see how may engen vectors we food

$$
\left(\begin{array}{ccc}
4-3 & 1 & 1 \\
-1 & 2-3 & 1 \\
0 & 0 & 3-3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Since there B only one free variable is matrix on the felt it has only one eigenvector. So A has only one eigen pair, AB not dragonariable.
9. (Chapter 6: 30 points) Let W be the colum us space of $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)$ and let $\overrightarrow{\mathrm{b}}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$. Let $\overrightarrow{\hat{b}}$ be the near point to $\overrightarrow{\mathrm{b}}$ in the subspace W. Find $\overrightarrow{\mathrm{b}}$.

$$
\begin{aligned}
& A^{\top} A \vec{x}=A^{\top} \vec{b} \\
& A^{\top} A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{cc}
1++1+1 & 1+1 \\
1+1 & 1+1
\end{array}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right) \\
& A^{\top} \vec{b}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\binom{1+(-1)+1}{1+(-1)+0}=\binom{1}{0}
\end{aligned}
$$

tau reduce anghented matron $\left(\begin{array}{ll|l}1 & \frac{2}{3} & \frac{1}{3} \\ 1 & 1 & 0\end{array}\right) \sim\left(\begin{array}{cc|c}1 & \frac{2}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{1}{3}\end{array}\right) \sim\left(\begin{array}{cc|c}1 & \frac{2}{3} & \frac{1}{3} \\ 0 & 1 & -1\end{array}\right)$

$$
\sim\left(\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right) \quad \therefore \quad \vec{x}=\binom{x_{1}}{x_{2}}=\binom{1}{-1}
$$

$$
\frac{\hat{b}}{\hat{b}}=A \hat{z}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right)\binom{1}{-1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

10. (Chapter 6: 30 points) Let Q be an orthogonal matrix with columns $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$. Let D be a diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Prove that the 3×3 matrix $A=Q D Q^{T}$ satisfies $A=\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{T}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{T}+\lambda_{3} \vec{q}_{3} \vec{q}_{3}^{T}$.
Since $A=Q D Q^{\top} Q$ has orthogonal coles $\vec{q}_{1} \vec{q}_{2} \vec{q}_{3}$ we knar $\vec{q}_{1} \vec{q}_{2} \vec{q}_{3}$ are eigen vector e of A D be diagonal motive withertives $\lambda_{1}, \lambda_{2} \lambda_{3}$
so $A \vec{q}_{1}=\lambda_{1} \vec{q}_{1}$

$$
\begin{aligned}
& \text { Anther } \\
& \begin{array}{l}
\text { Anther } \\
\text { proof: }
\end{array} Q=\left\langle\vec{q}_{1}\right| \vec{q}_{2}\left|\vec{q}_{3}\right\rangle \quad Q^{\top}=\left[\begin{array}{l}
\vec{q}_{1}^{\top} \\
q_{2}^{\top} \\
\vec{q}_{3}^{7}
\end{array}\right] \\
& A=\left[\begin{array}{l|l|l}
\vec{q}_{1} & \vec{q}_{2} & \vec{q}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{c}
\vec{q}_{3}^{\top} \\
\vec{q}_{r_{1}^{r}}^{r} \\
\vec{q}_{3}^{\top}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1} \vec{q}_{1} & \lambda_{2} \vec{q}_{2} \mid \lambda_{3} \vec{q}_{3}
\end{array}\right]\left[\begin{array}{l}
\vec{q}_{1}^{r} \\
\vec{q}_{r}^{r} \\
\dot{q}_{r}^{r} \\
\vec{q}_{3}
\end{array}\right] \\
& =\lambda \vec{q}_{1} \cdot \vec{q}_{1}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\lambda_{3} \vec{q}_{3} \vec{q}_{b}^{T}
\end{aligned}
$$

nuttophy $\lambda_{1} \vec{q}_{i} \dot{q}_{1}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\lambda_{3} \vec{q}_{3} \vec{q}_{3}^{\top}$ by \vec{q}_{1} sine $\vec{q}_{1} \perp \vec{q}_{2}, \vec{q}_{1} \perp \vec{q}_{3}$

$$
\vec{q}_{1}\left(\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\lambda_{3} \vec{q}_{3} \vec{q}_{3}^{\top}\right.
$$

$=\lambda_{1} q_{1}$ (q$q_{1} \beta_{s}$ unit vector sine it came from othogral math in the same way we can get
$A \vec{q}_{2}=\lambda_{2} \vec{q}_{2}=\vec{q}_{2}\left(\lambda_{1} \vec{q}_{q} \vec{q}_{+}^{\top}+\lambda_{1} \vec{q}_{q_{2}} \vec{q}_{2}^{\top}\right)$
$A \vec{q}_{3}=\lambda_{3} \vec{q}_{3}=\vec{q}_{\left(\lambda_{1} \vec{q}_{1}\right.}^{\vec{q}_{1}}+\vec{a}_{2} \vec{a}_{2} \vec{a}_{2}+\lambda_{3}$
so $A=\lambda_{1} q_{1} \vec{q}_{1}^{\top}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{\top}+\lambda_{3} \vec{q}_{3} \bar{q}^{9}$
11. (Chapter 7: 30 points) The spectral theorem says that a symmetric matrix A can be factored into $A=Q D Q^{T}$ where Q is orthogonal and D is diagonal. Find Q and D for the symmetric matrix $A=\left(\begin{array}{cc}4 & -1 \\ -1 & 4\end{array}\right)$.
find eigenvalues of A

$$
\left|\begin{array}{cc}
4-\lambda & -1 \\
-1 & 4-\lambda
\end{array}\right|=0
$$

$(4-\lambda)(4-\lambda)-(-1)(-1)=0$
(1)

$$
\begin{aligned}
& (\lambda-4)(\lambda-4)-1=0 \\
& \lambda^{2}-8 \lambda+16-1=0 \\
& \lambda^{2}-8 \lambda+15=0 \\
& (\lambda-3)(\lambda-5)=0
\end{aligned}
$$

$$
\sim\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \therefore \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

(2) solve for the secund eigenvector $\therefore \lambda_{1}=5, \lambda_{2}=3$.

$$
\left(\begin{array}{cc}
4-3 & -1 \\
-1 & 4-3
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \sim\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)
$$

unities \vec{v}_{1} get
$\therefore \vec{v}_{2}=\binom{1}{1} \quad \vec{u}_{2}=1$

$$
\vec{u}_{2}=\frac{1}{\sqrt{2}}\binom{1}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

$$
\text { So } D=\left(\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right) \quad Q=\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \quad O^{\top}=\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

12. (Chapter 7: 30 points) Write out the singular value decomposition for the matrix

$$
A=\left(\begin{array}{rr}
2 & 2 \\
-1 & 1
\end{array}\right)
$$

$$
A^{\top} A=\left(\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
4+1 & 4-1 \\
4-1 & 4+1
\end{array}\right)=\left(\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right)
$$

They solve for iran values of $A^{\top} A\left|\begin{array}{cc}5-\lambda & 3 \\ 3 & 5-\lambda\end{array}\right|=0$

$$
\begin{array}{ll}
(5-\lambda)(5-\lambda)-9=0 & \text { so singular val } \\
(\lambda-5)(\lambda-5)-9=0 & \partial_{1}=\sqrt{8}=2 \sqrt{2} \\
\lambda^{2}-10 \lambda+25-9=0 & \partial_{2}=\sqrt{2}
\end{array}
$$

$$
\lambda^{2}-10 \lambda+16=0
$$

$\lambda^{2}-10 \lambda+16=0 \quad$ solve for eiger vectors of $A^{\top} A$

$$
\vec{u}_{1}=\frac{A \vec{v}_{1}}{\partial 1}=\frac{1}{2_{1}}\left(\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\lambda-2)(\lambda-8)=0 \\
\therefore \lambda_{1}=8 \lambda_{2}=2
\end{array} \quad\left(\begin{array}{cc}
5-8 & 3 \\
3 & 5-8
\end{array}\right)=\left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right) \text { so } \begin{array}{l}
\text { untie to get } \\
=1 \\
\sqrt{2} \\
\sqrt{2} \\
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{l}
\frac{1}{\sqrt{2}} \\
1 \\
\frac{1}{\sqrt{2}}
\end{array}\right) \quad=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
\end{aligned}
$$

\therefore SVD for A is

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{2}}\binom{\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}=\frac{1}{2 \sqrt{2}}\binom{\frac{4}{\sqrt{2}}}{0} \\
& \left(\begin{array}{cc}
5-2 & 3 \\
3 & 5-2
\end{array}\right)=\left(\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right) \xrightarrow[{v_{2}=\frac{1}{\sqrt{2}}}]{\text { unite }}\binom{-1}{1} \\
& =\binom{\frac{1}{2 \sqrt{2}} \cdot \frac{4}{\sqrt{2}}}{0}=\binom{1}{0} \\
& \vec{u}_{2}=\frac{A \cdot \vec{v}_{2}}{\partial z}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right)\binom{\frac{-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}\binom{0}{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}\binom{0}{\frac{2}{\sqrt{2}}}=\binom{0}{1}
\end{aligned}
$$

13. (Chapter 4: 30 points) Let the linear transformation T from \mathcal{R}^{3} to \mathcal{R}^{3} be defined by its action on three independent vectors:

$$
T\left(\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
4 \\
4 \\
2
\end{array}\right), T\left(\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
5 \\
1 \\
1
\end{array}\right), T\left(\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right)
$$

Find the unique 3×3 matrix A such that T is defined by the matrix multiply equation $T(\vec{x})=A \vec{x}$.

Write the three thanstanotios ane one, te T wonk on each oolummat the matrix on wight of dot product form

$$
A\left(\begin{array}{lll}
3 & 0 & 1 \\
2 & 2 & 2 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 5 & 4 \\
4 & 1 & 0 \\
2 & 1 & 2
\end{array}\right)
$$

Let B represent $\left(\begin{array}{lll}3 & 0 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 1\end{array}\right)$
since determinant of B is not $D \quad|B|=1 \times(-1) \times 4+1 \times 1 \times 6=2$

$$
\begin{aligned}
& \therefore B^{-1} \text { exist } A=\left(\begin{array}{lll}
4 & 5 & 4 \\
4 & 1 & 0 \\
2 & 1 & 2
\end{array}\right) \times B^{-1} \\
& \text { Solvefor } B^{-1} \text { first }\left(\begin{array}{ccc|ccc}
3 & 0 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|ccc}
1 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
1 & 1 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|ccc}
1 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{2} & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right. \\
& A=\left(\begin{array}{lll}
4 & 5 & 4 \\
4 & 1 & 0 \\
2 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{2} & -1 \\
-1 & \frac{3}{2} & -2 \\
1 & -\frac{3}{2} & 3
\end{array}\right)=\left(\begin{array}{lll}
0 \times 4+5 \times(-))+4 \times 1 & \frac{1}{2} \times 4+\frac{3}{2} \times 5+\left(\frac{3}{2} \times 4\right. & 4 \times(-1)+5(\\
0 \times 4+1 \times(-1)+0 & \frac{1}{2} \times 4+\frac{3}{2} \times 1 & +3 \times 4 \\
2 \times 0+\mid \times(-1)+2 \times 1 & 4 \times(-1)-2 \\
& \frac{1}{2} \times 2+\frac{3}{2} \times 1-\frac{3}{2} \times 2 & -2-2+6
\end{array}\right. \\
& \text { Checked with maple. The answer } \\
& \text { given here is correct. } \\
& 15\left(\begin{array}{ccc}
-1 & \frac{7}{2} & -2 \\
-1 & \frac{7}{2} & -6 \\
1 & -\frac{1}{2} & 2
\end{array}\right)
\end{aligned}
$$

14. (Chapter 4, 7: 40 points) Let A be an $m \times n$ matrix. Denote by S_{1} the row space of of A and S_{2} the colum u space of A. It, is known that S_{1} and S_{2} have dimension $r=\operatorname{rank}(A)$. Let $\vec{p}_{1}, \ldots, \vec{p}_{r}$ be a basis for S_{1} and let $\vec{q}_{1}, \ldots, \vec{q}_{r}$ be a basis for S_{2}. For example, select the pivot columns of A^{T} and A, respectively. Define $T: S_{1} \rightarrow S_{2}$ initially by $T\left(\vec{p}_{i}\right)=\vec{q}_{i}, \quad i=1, \ldots, r$. Extend T to all of S_{1} by linearity, which means the final definition is

$$
T\left(c_{1} \vec{p}_{1}+\cdots+c_{r} \vec{p}_{r}\right)=c_{1} \vec{q}_{1}+\cdots+c_{r} \vec{q}_{r}
$$

one to Prove that T is onc-tome and onto.
one:
let \bar{x} be a vector $\bar{m} S_{1}$, ie tow spore of A
Let $\vec{x}_{1} \vec{x}_{2}$ be tho vectors that are equal after linear tran formotis T, and $\vec{x}=\vec{x}_{1}$

$$
\text { ic } A \vec{x}_{1}=A \vec{x}_{2} \Rightarrow A \vec{x}_{1}-A \vec{x}_{2}=0 \quad A\left(\vec{x}_{1}-\vec{x}_{2}\right)=0 \quad A \vec{x}=\overrightarrow{0}
$$

ie \vec{x} m mull space of A since mulspare of $A 1$ row-space of A and \bar{x} iorsection so $\vec{x}=\overrightarrow{0}$ ie $\vec{x}_{1}=\vec{x}_{2}$ so onetoone proven

Onto: Let \vec{y} be onyvector mi s $_{2}$, ie common spare of A, ie \vec{y} is linear conbisotin of columns of A. so there exist a \vec{x} whose entries are weight of Inpour combriatis then $A \bar{X}=\vec{y}$ so onto-ppovern
15. (Chapter 4: 20 points) Least squares can be used to find the best fit line for the points (1,2), (2,2), (3, 0). Without finding the line equation, describe how to do it, in a few sentences.

Find \vec{x} pf $A \vec{x}=\vec{b}$ by, using $y=v_{1} x+v_{2}$, where $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$

Plugging that into the normal equation $A^{\top} A \vec{y}=A^{\top} \vec{b}$, then solve.

The The cogsession fits a best fit line by taking the average distance from

Picture

the date points and plots a linear or non-limear line/curve. The pest fit lime is interpolated from the data Points that have been collected.

$$
y=x\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]
$$

16. (Chapters 1 to 7: 20 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.
Güen matin A, there are four spaces of $A \operatorname{Col} A$. Null row space of A. Null'
part two $=\operatorname{Nul} A \perp$ to row spare of A
substitute A with AT above

$$
\operatorname{NaY} A^{\top} \perp \operatorname{col} A
$$

Let r be rank of A. Abe $m \times n$
part 1 row space of A has dinensin r

$$
\begin{aligned}
\operatorname{dim}(\operatorname{col} A) & =r \\
\operatorname{Nu|A} & =n-r \\
\text { Nu| AT } & =m-r
\end{aligned}
$$

17. (Chapter 7: 20 points) State the Spectral Theorem for symmetric matrices. Include the important results included in the spectral theorem, about real eigenvalues and diagonalizability. Then discuss the spectral decomposition.
Ergenvalues are sometries called Spetrat spectrum
(1) Eigan vectors of symmenic matins that composperel to dishict eifer values are orthogonal with each other
(2) Amensin of ergen spaces of symnetire matin are the muttopterey of comesponderg eigen values Also eigenspare that conespard to district eigen values are orthogonal to each other.
(3) Symmetric matrices are all dragonalrable
(4) If all eigen values are >0 the A is positive definite If all eigenvalues are <0 then A is nagetice defile if A has both positive and negate eigenvalues, then A is indefaite
(5) Dis diagonal with entries connieffin A's engen values P is orthogal with cohunes bear A s origen vertor after berg untied then $A=P D P^{\top}=P D P^{-1}$

An eigenspace may have multiple vectors found as Strand's Special solutions which are not orthogonal. Gram-Schmidt is applied to these vectors to replace the eigenspace basis by an orthogonal basis.

