
MATH 2270-2 Final Exam Sample Problems Spring 2017

ANSWERS

1. (5 points) Let A be a 2× 2 matrix such that A

(
1

1

)
=

(
1

0

)
. Compute A

(
2

2

)
.

Answer:

A

(
2

2

)
= 2A

(
1

1

)
= 2

(
1

0

)
=

(
2

0

)

2. (5 points) State (1) the definition of norm, (2) the Cauchy-Schwartz inequality and

(3) the triangle inequality, for vectors in Rn.

Answer:

(1) Norm of ~v equals ‖~v‖ =
√
~vT~v; (2) |~a ·~b| ≤ ‖~a‖‖~b‖; (3) ‖~a+~b‖ ≤ ‖~a‖+ ‖~b‖.

3. (5 points) Suppose A = B(C +D)E and all the matrices are n×n invertible. Find an

equation for C.

Answer:

AE−1 = BC +BD implies C = B−1(AE−1 −BD).

4. (5 points) Find all solutions to the system of equations

2w + 3x+ 4y + 5z = 1

4w + 3x+ 8y + 5z = 2

6w + 3x+ 8y + 5z = 1

Answer:

Infinite solution case: w = −1/2, x = −(5/3)t1, y = 1/2, z = t1.

5. (5 points) Let A =

(
2 1

0 3

)
. Show the details of two different methods for finding

the inverse of the matrix A.

Answer:
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The two methods are (1) A−1 = adj(A)
|A| and (2) For C =< A|I >, then rref(C) =< I|A−1 >.

Details expected, but not supplied here.

6. (5 points) Find a factorization A = LU into lower and upper triangular matrices for

the matrix A =

 2 1 0

1 2 1

0 1 2

.

Answer:

Let E1 be the result of combo(1,2,-1/2) on I, and E2 the result of combo(2,3,-2/3) on I.

Then E2E1A = U =

 2 1 0

0 3
2

1

0 0 4
3

. Let L = E−11 E−12 =

 1 0 0
1
2

1 0

0 2
3

1

.

7. (5 points) Let Q be a 2× 2 matrix with QQT = I. Prove that Q has columns of unit

length and its two columns are orthogonal.

Answer:

First, AB = I with both A,B square implies BA = I. So QTQ = I. Then Q =< ~q1|~q2 >

implies QTQ =

(
~q1 · ~q1 ~q1 · ~q2
~q2 · ~q1 ~q2 · ~q2

)
. Relation QTQ = I then implies orthogonality of the

columns and that the columns have length one.

8. (5 points) True or False? If the 3 × 3 matrices A and B are triangular, then AB is

triangular.

Answer:

False. Consider the decomposition A = LU in a problem above. True if both matrices are

upper triangular or both matrices are lower triangular.

9. (5 points) True or False? If a 3× 3 matrix A has an inverse, then for all vectors ~b the

equation A~x = ~b has a unique solution ~x.

Answer:

True, ~x = A−1~b.

10. (5 points) Let A be a 3 × 4 matrix. Find the elimination matrix E which under left

multiplication against A performs both (1) and (2) with one matrix multiply.
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(1) Replace Row 2 of A with Row 2 minus Row 1.

(2) Replace Row 3 of A by Row 3 minus 5 times Row 2.

Answer:

Perform combo(1,2,-1) on I then combo(2,3,-5) on the result. The elimination matrix is

E =

 1 0 0

−1 1 0

5 −5 1



11. (10 points) Determinant problem, chapter 3.

(a) [10%] True or False? The value of a determinant is the product of the diagonal elements.

(b) [10%] True or False? The determinant of the negative of the n×n identity matrix is −1.

(c) [30%] Assume given 3 × 3 matrices A, B. Suppose E2E1A
2 = AB and E1, E2 are

elementary matrices representing respectively a combination and a multiply by 3. Assume

det(B) = 27. Let C = −A. Find all possible values of det(C).

(d) [20%] Determine all values of x for which (2I + C)−1 fails to exist, where I is the 3× 3

identity and C =

 2 x −1

3x 0 1

1 0 −1

.

(e) [30%] Let symbols a, b, c denote constants and define

A =


1 −1 0 0

1 0 0 0

a b 0 1

1 c 1 1
2


Apply the adjugate [adjoint] formula for the inverse

A−1 =
adj(A)

|A|

to find the value of the entry in row 4, column 2 of A−1.

Answer:

(a) FALSE. True only if the matrix is triangular.

(b) FALSE. It equals 1 when n is even.
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(c) Start with the determinant product theorem |FG| = |F ||G|. Apply it to obtain |E2||E1||A|2 =

|A||B|. Let x = |A| in this equation and solve for x. You will need to know that |E1| = 1

and |E2| = 3. Then |C| = |(−I)A| = |− I||A| = (−1)3x. The answer is |C| = 0 or |C| = −9.

(d) Find C + I =


4 x −1

3x 2 1

1 0 1

, then evaluate its determinant, to eventually solve for

x = −5/3 and x = 2. Used here is F−1 exists if and only if |F | 6= 0.

(e) Find the cross-out determinant in row 2, column 4 (no mistake, the transpose swaps

rows and columns). Form the fraction, top=checkerboard sign times cross-out determinant,

bottom=|A|. The value is −b− a. A maple check:

C4:=Matrix([[1,-1,0,0],[1,0,0,0],[a,b,0,1],[1,c,1,1/2]]);

1/C4; # The inverse matrix

C5:=linalg[minor](C4,2,4);

(-1)**(2+4)*linalg[det](C5)/linalg[det](C4);

# ans = -b-a

12. (5 points) Define matrix A, vector ~b and vector variable ~x by the equations

A =

 −2 3 0

0 −4 0

1 4 1

 , ~b =

 −3

5

1

 , ~x =

 x1

x2

x3

 .

For the system A~x = ~b, find x3 by Cramer’s Rule, showing all details (details count 75%).

To save time, do not compute x1, x2!

Answer:

x3 = ∆3/∆, ∆ = det

 −2 3 0

0 −4 1

1 4 1

 = −8, ∆3 = det

 −2 3 −3

0 −4 5

1 4 1

 = 59, x3 =

−59
8

.

13. (5 points) Define matrix A =

 3 1 0

3 3 1

0 2 4

. Find a lower triangular matrix L and

an upper triangular matrix U such that A = LU .

Answer:
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Let E1 be the result of combo(1,2,-1/2) on I, and E2 the result of combo(2,3,-2/3) on I.

Then E2E1A = U =

 2 1 0

0 3
2

1

0 0 4
3

. Let L = E−11 E−12 =

 1 0 0
1
2

1 0

0 2
3

1

.

14. (5 points) Determine which values of k correspond to a unique solution for the

system A~x = ~b given by

A =

 1 4 k

0 k − 2 k − 3

1 4 3

 , ~b =

 1

−1

k

 .

Answer:

There is a unique solution for det(A) 6= 0, which implies k 6= 2 and k 6= 3. Alternative

solution: Elimination methods with swap, combo, multiply give

 1 4 k 1

0 k − 2 0 k − 2

0 0 3− k k − 1

.

Then (1) Unique solution for three lead variables, equivalent to the determinant nonzero

for the frame above, or (k − 2)(3 − k) 6= 0; (2) No solution for k = 3 [signal equation]; (3)

Infinitely many solutions for k = 2.

15. (10 points) Let a, b and c denote constants and consider the system of equations 1 −b c

1 c a

2 −b+ c −a


 x

y

z

 =

 a

−a
−a


Use techniques learned in this course to briefly explain the following facts. Only write what

is needed to justify a statement.

(a). The system has a unique solution for (b+ c)(2a+ c) 6= 0.

(b). The system has no solution if 2a+c = 0 and a 6= 0 (don’t explain the other possibilities).

(c). The system has infinitely many solutions if a = c = 0 (don’t explain the other possi-

bilities).
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Answer:

Combo, swap and mult are used to obtain in 3 combo steps the matrix

A3 =

 1 −b c a

0 b+ c −c+ a −2a

0 0 −c− 2a −a


(a) Uniqueness requires zeros free variables. Then the diagonal entries of the last frame must

be nonzero, written simply as −(c + b)(2a + c) 6= 0, which is equivalent to the determinant

of A not equal to zero.

(b) No solution: The last row of A3 is a signal equation if c+ 2a = 0 and a 6= 0.

(c) Infinitely many solutions: If a = c = 0, then A3 has last row zero. If a = c = 0 and b = 0,

then there is one lead variable and two free variables, because the last two rows of A3 are

zero. If a = c = 0 and b 6= 0, then there are two lead variables and one free variable. The

homogeneous problem has infinitely many solutions, because of at least one free variable and

no signal equation.

The sequence of steps are documented below for maple.

with(LinearAlgebra):

combo:=(A,s,t,m)->LinearAlgebra[RowOperation](A,[t,s],m);

mult:=(A,t,m)->LinearAlgebra[RowOperation](A,t,m);

swap:=(A,s,t)->LinearAlgebra[RowOperation](A,[s,t]);

A:=(a,b,c)->Matrix([[1,b,c,-a],[1,c,-a,a],[2,b+c,a,a]]);

A0:=A(a,b,c);

A1:=combo(A(a,b,c),1,2,-1);

A2:=combo(A1,1,3,-2);

A3:=combo(A2,2,3,-1);

A4:=convert(A3,list,nested=true);

A4 := [[1, -b, c, a], [0, b+c, -c+a, -2*a], [0, 0, -c-2*a, -a]];

16. (5 points) Explain how the span theorem applies to show that the set S of all

linear combinations of the functions coshx, sinhx is a subspace of the vector space V of all

continuous functions on −∞ < x <∞.

Answer:
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The span theorem says span(~v1, ~v2) is a subspace of V , for any two vectors in V . Choose

the two vectors to be coshx, sinhx.

17. (5 points) Write a proof that the subset S of all solutions ~x in Rn to a homogeneous

matrix equation A~x = ~0 is a subspace of Rn. This is called the kernel theorem.

Answer:

(1) Zero is in S because A~0 = ~0; (2) If A~v1 = ~0 and A~v2 = ~0, then ~v = ~v1 + ~v2 satisfies

A~v = A~v1 + A~v2 = ~0 + ~0 = ~0. So ~v is in S; (3) Let ~v1 be in S, that is, A~v1 = ~0. Let c be

a constant. Define ~v = c~v1. Then A~v = A(c~v1) = cA~v1 = (c)~0 = ~0. Then ~v is in S. This

completes the proof.

18. (5 points) Using the subspace criterion, write two hypotheses that imply that a set

S in a vector space V is not a subspace of V . The full statement of three such hypotheses

is called the Not a Subspace Theorem.

Answer:

(1) If the zero vector is not in S, then S is not a subspace. (2) If two vectors in S fail to

have their sum in S, then S is not a subspace. (3) If a vector is in S but its negative is not,

then S is not a subspace.

19. (5 points) Report which columns of A are pivot columns: A =

 0 1 1

0 1 2

0 0 0

.

Answer:

Zero cannot be a pivot column (no leading one in rref(A)). The other two columns are

not constant multiples of one another, therefore they are independent and will become pivot

columns in rref(A). Then: pivot columns =2,3.

20. (5 points) Find the complete solution ~x = ~xh + ~xp for the nonhomogeneous system 0 1 1

0 1 2

0 0 0


 x1

x2

x3

 =

 2

3

0

 .

The homogeneous solution ~xh is a linear combination of Strang’s special solutions. Symbol

~xp denotes a particular solution.

Answer:
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The augmented matrix has reduced row echelon form (last frame) equal to the matrix

0 1 0 1

0 0 1 1

0 0 0 0

. Then x1 = t1, x2 = 1, x3 = 1 is the general solution in scalar form. The partial

derivative on t1 gives the homogeneous solution basis vector

 1

0

0

. Then ~xh = c1

 1

0

0


Set t1 = 0 in the scalar solution to find a particular solution ~xp =

 0

1

1

.

21. (5 points) Find the vector general solution ~x to the equation A~x = ~b for

A =

1 0 0 4

3 0 1 0

4 0 0 1

 , ~b =

0

4

0


Answer:

The augmented matrix for this system of equations is1 0 0 4 0

3 0 1 0 4

4 0 0 1 0


The reduced row echelon form is found as follows:1 0 0 4 0

0 0 1 −12 4

4 0 0 1 0

 combo(1,2,-3)

1 0 0 4 0

0 0 1 −12 4

0 0 0 −16 0

 combo(1,3,-4)

1 0 0 4 0

0 0 1 −12 4

0 0 0 1 0

 mult(3,-1/16)

1 0 0 0 0

0 0 1 0 4

0 0 0 1 0

 last frame
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The last frame, or RREF, implies the system

x1 = 0

x3 = 4

x4 = 0

The lead variables are x1, x3, x4 and the free variable is x2. The last frame algorithm intro-

duces invented symbol t1. The free variable is set to this symbol, then back-substitute into

the lead variable equations of the last frame to obtain the general solution

x1 = 0,

x2 = t1,

x3 = 4,

x4 = 0.

Strang’s special solution ~s1 is the partial of ~x on the invented symbol t1. A particular solution

~xp is obtained by setting all invented symbols to zero. Then

~x = ~xp + t1~s1 =


0

0

4

0

+ t1


0

1

0

0



22. (5 points) Find the reduced row echelon form of the matrix A =

 0 1 1

0 0 0

0 1 2

.

Answer:

It is the matrix

 0 1 0

0 0 1

0 0 0

.

23. (5 points) A 10 × 13 matrix A is given and the homogeneous system A~x = ~0

is transformed to reduced row echelon form. There are 7 lead variables. How many free

variables?

Answer:

Because ~x has 13 variables, then the rank plus the nullity is 13. There are 6 free variables.

24. (5 points) The rank of a 10× 13 matrix A is 7. Find the nullity of A.

9



Answer:

There are 13 variables. The rank plus the nullity is 13. The nullity is 6.

25. (5 points) Given a basis ~v1 =

(
3

2

)
, ~v2 =

(
4

4

)
of R2, and ~v =

(
10

4

)
, then ~v =

c1~v1 + c2~v2 for a unique set of coefficients c1, c2, called the coordinates of ~v relative to the

basis ~v1, ~v2. Compute c1 and c2.

Answer:

26. (5 points) Determine independence or dependence for the list of vectors1

2

3

 ,

4

0

4

 ,

3

2

1


Answer:

Possible tests are the rank test, determinant test, pivot theorem, orthogonality test. Let A

denote the augmented matrix of the three column vectors. The determinant is 32, nonzero,

so the vectors are independent. The pivot theorem also applies. The rref(A) is the identity

matrix, so all columns are pivot columns, hence the three columns are independent. The rank

test applies because the rank is 3, equal to the number of columns, hence independence.

27. (5 points) Check the independence tests which apply to prove that 1, x2, x3 are

independent in the vector space V of all functions on −∞ < x <∞.
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Wronskian test Wronskian of ~f1, ~f2, ~f3 nonzero at x = x0 implies inde-

pendence of ~f1, ~f2, ~f3.

Rank test Vectors ~v1, ~v2, ~v3 are independent if their augmented

matrix has rank 3.

Determinant test Vectors ~v1, ~v2, ~v3 are independent if their square aug-

mented matrix has nonzero determinant.

Euler Atom test Any finite set of distinct atoms is independent.

Sample test Functions ~f1, ~f2, ~f3 are independent if a sampling matrix

has nonzero determinant.

Pivot test Vectors ~v1, ~v2, ~v3 are independent if their augmented

matrix A has 3 pivot columns.

Orthogonality test A set of nonzero pairwise orthogonal vectors is indepen-

dent.

Answer:

The first, fourth and fifth apply to the given functions, while the others apply only to fixed

vectors.

28. (5 points) Define S to be the set of all vectors ~x in R3 such that x1 + x3 = 0 and

x3 + x2 = x1. Prove that S is a subspace of R3.

Answer:

Let A =

 1 0 1

−1 1 1

0 0 0

. Then the restriction equations can be written as A~x = ~0. Apply

the nullspace theorem (also called the kernel theorem), which says that the nullspace of a

matrix is a subspace.

Another solution: The given restriction equations are linear homogeneous algebraic equa-

tions. Therefore, S is the nullspace of some matrix B, hence a subspace of R3. This solution

uses the fact that linear homogeneous algebraic equations can be written as a matrix equa-

tion B~x = ~0.

Another solution: Verify the three checkpoints for a subspace S in the Subspace Criterion.

This is quite long, and certainly the last choice for a method of proof.

29. (5 points) The 5 × 6 matrix A below has some independent columns. Report the
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independent columns of A, according to the Pivot Theorem.

A =


0 0 0 0 0 0

−3 0 0 −2 1 −1

−1 0 0 0 1 0

6 0 0 6 0 3

2 0 0 2 0 1



Answer:

Find rref(A) =


1 0 0 0 −1 0

0 0 0 1 1 1/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

. The pivot columns are 1 and 4.

30. (5 points) Let S be the subspace of R4 spanned by the vectors

~v1 =


1

1

1

0

 , ~v2 =


1

1

0

1

 .

Find a Gram-Schmidt orthonormal basis of S.

Answer:

Let ~y1 = ~v1 and ~u1 = 1
‖~y1‖~y1. Then ~u1 = 1√

3


1

1

1

0

. Let ~y2 = ~v2 minus the shadow projection

of ~v2 onto the span of ~v1. Then

~y2 = ~v2 −
~v2 · ~v1
~v1 · ~v1

~v1 =
1

3


1

1

−2

1

 .

Finally, ~u2 = 1
‖~y2‖~y2. We report the Gram-Schmidt basis:

~u1 =
1√
3


1

1

1

0

 , ~u2 =
1√
6


1

1

−2

1

 .
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31. (5 points) Find the orthogonal projection vector ~v (the shadow projection vector) of

~v2 onto ~v1, given

~v1 =


1

1

1

0

 , ~v2 =


1

1

0

1

 .

Answer:

Use the formula ~v = d~v1 where d =
~v2 · ~v1
~v1 · ~v1

.

32. (5 points) Let A be an m× n matrix with independent columns. Prove that ATA is

invertible.

Answer:

The matrix B = ATA has dimension n× n. We prove that the nullspace of B = ATA is the

zero vector.

Let ~x belong toRn. Assume B~x = ~0, then multiply this equation by ~xT to obtain ~xTATA~x =

~xT~0 = 0. Therefore, ‖A~x‖2 = 0, or A~x = ~0. If A has independent columns, then the nullspace

of A is the zero vector, so ~x = ~0. We have proved that the nullspace of B = ATA is the zero

vector.

An n× n matrix B is invertible if and only if its nullspace is the zero vector. So B = ATA

is invertible.

33. (5 points) Let A be an m × n matrix with ATA invertible. Prove that the columns

of A are independent.

Answer:

The columns of A are independent if and only if the nullspace of A is the zero vector. If you

don’t know this result, then find it in Strang’s book, or prove it yourself.

Assume ~x is in the nullspace of A, A~x = ~0, then multiply by AT to get ATA~x = ~0. Because

ATA is invertible, then ~x = ~0, which proves the nullspace of A is the zero vector. We

conclude that the columns of A are independent.

34. (5 points) Let A be an m × n matrix and ~v a vector orthogonal to the nullspace of

A. Prove that ~v must be in the row space of A.
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Answer:

The fundamental theorem of linear algebra is summarized by rowspace ⊥ nullspace. This

relation implies nullspace ⊥ rowspace, because for subspaces S we have (S⊥)⊥ = S. The

conclusion follows.

35. (5 points) Define matrix A and vector ~b by the equations

A =

 −2 3 0

0 −2 4

1 0 −2

 , ~b =

 1

2

3

 .

Find the value of x2 by Cramer’s Rule in the system A~x = ~b.

Answer:

x2 = ∆2/∆, ∆2 = det

 −2 1 0

0 2 4

1 3 −2

 = 36, ∆ = det(A) = 4, x2 = 9.

36. (5 points) Assume A−1 =

(
2 −6

0 4

)
. Find the inverse of the transpose of A.

Answer:

Compute (AT )−1 = (A−1)T =

((
2 −6

0 4

))T

=

(
2 0

−6 4

)
.

37. (5 points) This problem uses the identity Aadj(A) = adj(A)A = |A|I, where |A| is the

determinant of matrix A. Symbol adj(A) is the adjugate or adjoint of A. The identity is used to derive

the adjugate inverse identity A−1 = adj(A)/|A|..

Let B be the matrix given below, where ? means the value of the entry does not affect

the answer to this problem. The second matrix is C = adj(B). Report the value of the

determinant of matrix C−1B2.

B =


1 −1 ? ?

1 ? 0 0

? 0 2 ?

? 0 0 ?

 , C =


4 4 2 0

−4 4 −2 0

0 0 4 0

0 0 0 4



Answer:
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The determinant of C−1B2 is |B|2/|C|. Then CB == adj(B)B = |B|I implies |C||B| =

det(|B|I) = |B|4. Because |C| = |B|3, then the answer is 1/|B|. Return to CB = |B|I and

do one dot product to find the value |B| = 8. We report det(C−1B2) = 1/|B| = 1/8.

38. (5 points) Display the entry in row 3, column 4 of the adjugate matrix [or adjoint

matrix] of A =


0 2 −1 0

0 0 4 1

1 3 −2 0

0 1 1 0

. Report both the symbolic formula and the numerical

value.

Answer:

The answer is the cofactor of A in row 4, column 3 = (−1)7 times minor of A in 4,3 = −2.

39. (5 points) Consider a 3× 3 real matrix A with eigenpairs−1,

 5

6

−4


 ,

2i,

 i

2

0


 ,

−2i,

 −i2
0


 .

Display an invertible matrix P and a diagonal matrix D such that AP = PD.

Answer:

The columns of P are the eigenvectors and the diagonal entries of D are the eigenvalues,

taken in the same order.

40. (5 points) Find the eigenvalues of the matrix A =


0 −12 3 0

0 1 −1 0

0 1 3 0

0 5 1 3

.

To save time, do not find eigenvectors!

Answer:

The characteristic polynomial is det(A − rI) = (−r)(3 − r)(r − 2)2. The eigenvalues are

0, 2, 2, 3. Determinant expansion of det(A− λI) is by the cofactor method along column 1.

This reduces it to a 3×3 determinant, which can be expanded by the cofactor method along

column 3.
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41. (5 points) The matrix A =

 0 −12 3

0 1 −1

0 1 3

 has eigenvalues 0, 2, 2 but it is not

diagonalizable, because λ = 2 has only one eigenpair. Find an eigenvector for λ = 2.

To save time, don’t find the eigenvector for λ = 0.

Answer:

Because A− 2I =

 −2 −12 3

0 −1 −1

0 1 1

 has last frame B =

 1 0 −15/2

0 1 1

0 0 0

, then there is

only one eigenpair for λ = 2, with eigenvector ~v =

 15

−2

2

.

42. (5 points) Find the two complex eigenvectors corresponding to complex eigenvalues

−1± 2i for the 2× 2 matrix A =

(
−1 2

−2 −1

)
.

Answer:(
−1 + 2i,

(
−i

1

))
,

(
−1− 2i,

(
i

1

))

43. (5 points) Let A =

(
−7 4

−12 7

)
. Circle possible eigenpairs of A.

(
1,

(
1

2

))
,

(
2,

(
2

1

))
,

(
−1,

(
2

3

))
.

Answer:

The first and the last, because the test A~x = λ~x passes in both cases.

44. (5 points) Let I denote the 3 × 3 identity matrix. Assume given two 3 × 3 matrices

B, C, which satisfy CP = PB for some invertible matrix P . Let C have eigenvalues −1, 1,

5. Find the eigenvalues of A = 2I + 3B.

Answer:

Both B and C have the same eigenvalues, because det(B − λI) = det(P (B − λI)P−1) =
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det(PCP−1 − λPP−1) = det(C − λI). Further, both B and C are diagonalizable. The

answer is the same for all such matrices, so the computation can be done for a diagonal

matrix B = diag(−1, 1, 5). In this case, A = 2I + 3B = diag(2, 2, 2) + diag(−3, 3, 15) =

diag(−1, 5, 17) and the eigenvalues of A are −1, 5, 17.

45. (5 points) Let A be a 3× 3 matrix with eigenpairs

(4, ~v1), (3, ~v2), (1, ~v3).

Let P denote the augmented matrix of the eigenvectors ~v2, ~v3, ~v1, in exactly that order.

Display the answer for P−1AP . Justify the answer with a sentence.

Answer:

Because AP = PD, then D = P−1AP is the diagonal matrix of eigenvalues, taken in the

order determined by the eigenpairs (3, ~v2), (1, ~v3), (4, ~v1). Then D =

 3 0 0

0 1 0

0 0 4

.

46. (5 points) The matrix A below has eigenvalues 3, 3 and 3. Test A to see it is

diagonalizable, and if it is, then display three eigenpairs of A.

A =

 4 1 1

−1 2 1

0 0 3



Answer:

Compute rref(A − 3I) =

 1 1 0

0 0 1

0 0 0

. This has rank 2, nullity 1. There is just one

eigenvector

 1

−1

0

 for λ = 3. Not diagonalizable, no Fourier’s model, not possible to

display three eigenpairs.

47. (5 points) Assume A is a given 4× 4 matrix with eigenvalues 0, 1, 3± 2i. Find the

eigenvalues of 4A− 3I, where I is the identity matrix.

Answer:

Such a matrix is diagonalizable, because of four distinct eigenvalues. Then 4B − 3I has
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the same eigenvalues for all matrices B similar to A. In particular, 4A − 3I has the same

eigenvalues as 4D−3I where D is the diagonal matrix with entries 0, 1, 3+2i, 3−2i. Compute

4D − 3I =


−3 0 0 0

0 1 0 0

0 0 9 + 8i 0

0 0 0 9− 8i

. The answer is 0, 1, 9 + 8i, 9− 8i.

48. (5 points) Find the eigenvalues of the matrix A =


0 −2 −5 0 0

3 0 −12 3 0

0 0 1 −1 0

0 0 1 3 0

0 0 5 1 3

.

To save time, do not find eigenvectors!

Answer:

The characteristic polynomial is det(A− rI) = (r2 + 6)(3− r)(r − 2)2. The eigenvalues are

2, 2, 3,±
√

6i. Determinant expansion is by the cofactor method along column 5. This reduces

it to a 4× 4 determinant, which can be expanded as a product of two quadratics. In detail,

we first get |A− rI| = (3− r)|B − rI|, where B =


0 −2 −5 0

3 0 −12 3

0 0 1 −1

0 0 1 3

. So we have one

eigenvalue 3, and we find the eigenvalues of B. Matrix B is a block matrix B =

(
B1 B2

0 B3

)
,

where B1, B2, B3 are all 2× 2 matrices. Then B − rI =

(
B1 − rI B2

0 B3 − rI

)
. Using the

determinant product theorem for such special block matrices (zero in the left lower block)

gives |B − rI| = |B1 − rI|B3 − rI|. So the answer for the eigenvalues of A is 3 and the

eigenvalues of B1 and B3. We report 3,±
√

6i, 2, 2. It is also possible to directly find the

eigenvalues of B by cofactor expansion of |B − rI|.

49. (5 points) Consider a 3× 3 real matrix A with eigenpairs3,

 13

6

−41


 ,

2i,

 i

2

0


 ,

−2i,

 −i2
0


 .

(1) [10%] Display an invertible matrix P and a diagonal matrix D such that

AP = PD.
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(2) [10%] Display a matrix product formula for A, but do not evaluate the matrix

products, in order to save time.

Answer:

(1) P =

 13 i −i
6 2 2

−41 0 0

, D =

 3 0 0

0 2i 0

0 0 −2i

. (2) AP = PD implies A = PDP−1.

50. (5 points) Assume two 3 × 3 matrices A, B have exactly the same characteristic

equations. Let A have eigenvalues 2, 3, 4. Find the eigenvalues of (1/3)B − 2I, where I is

the identity matrix.

Answer:

Because the answer is the same for all matrices similar to A (that is, all B = PAP−1) then it

suffices to answer the question for diagonal matrices. We know A is diagonalizable, because

it has distinct eigenvalues. So we choose D equal to the diagonal matrix with entries 2, 3, 4.

Compute 1
3
D − 2I =


2
3
− 2 0 0

0 3
3
− 2 0

0 0 4
3
− 2

. Then the eigenvalues are −4
3
,−1,−2

3
.

51. (5 points) Let 3 × 3 matrices A and B be related by AP = PB for some invertible

matrix P . Prove that the roots of the characteristic equations of A and B are identical.

Answer:

The proof depends on the identityA−rI = PBP−1−rI = P (B−rI)P−1 and the determinant

product theorem |CD| = |C||D|. We get |A − rI| = |P ||B − rI||P−1| = |PP−1||B − rI| =

|B − rI|. Then A and B have exactly the same characteristic equation, hence exactly the

same eigenvalues.

52. (5 points) Find the eigenvalues of the matrix B:

B =


2 4 −1 0

0 5 −2 1

0 0 4 1

0 0 1 4



Answer:
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The characteristic polynomial is det(B− rI) = (2− r)(5− r)(5− r)(3− r). The eigenvalues

are 2, 3, 5, 5.

It is possible to directly find the eigenvalues of B by cofactor expansion of |B − rI|.

An alternate method is described below, which depends upon a determinant product theorem

for special block matrices, such as encountered in this example.

Matrix B is a block matrix B =

(
B1 B2

0 B3

)
, where B1, B2, B3 are all 2× 2 matrices. Then

B − rI =

(
B1 − rI B2

0 B3 − rI

)
. Using the determinant product theorem for such special

block matrices (zero in the left lower block) gives |B − rI| = |B1 − rI||B3 − rI|. So the

answer is that B has eigenvalues equal to the eigenvalues of B1 and B3. These are quickly

found by Sarrus’ Rule applied to the two 2× 2 determinants |B1 − rI| = (2− r)(5− r) and

|B3 − rI| = r2 − 8r + 15 = (5− r)(3− r).

53. (5 points) Let W be the column space of A =

 1 1

1 1

1 0

 and let ~b =

 1

−1

1

. Let

~̂
b be the near point to ~b in the subspace W . Find

~̂
b.

Answer:

The columns of A are independent. The normal equation is ATA~y = AT~b, which in explicit

form is

(
3 2

2 2

)
~y =

(
1

0

)
. The answer is ~y =

(
1

−1

)
. Then

~̂
b = Aỹ =

 0

0

1

.

54. (5 points) There are real 2×2 matrices A such that A2 = −4I, where I is the identity

matrix. Give an example of one such matrix A and then verify that A2 + 4I = 0.

Answer:

Choose any matrix whose characteristic equation is λ2 + 4 = 0. Then A2 + 4I = 0 by the

Cayley-Hamilton theorem.

55. (5 points) LetQ =< ~q1|~q2 > be orthogonal 2×2 andD a diagonal matrix with diagonal

entries λ1, λ2. Prove that the 2× 2 matrix A = QDQT satisfies A = λ1~q1~q
T
1 + λ2~q2~q

T
2 .

Answer:
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Let B = λ1~q1~q
T
1 +λ2~q2~q

T
2 . We prove A = B. First observe that both A and B are symmetric.

Because the columns of Q form a basis of R2, it suffices to prove that ~xTA = ~xTB for ~x

a column of A. For example, take ~x = ~q1. Then ~xTA = (AT~q1)
T = (A~q1)

T = λ1~q
T
1 .

Orthogonality of Q implies ~xTB = (B~q1)
T = (λ1~q1~q

T
1 ~q1 + λ2~q2~q

T
2 ~q1)

T = λ1(~q1 · 1)T = λ1~q
T
1 .

Repeat for subscript 2 to complete the proof.

56. (5 points) A matrix A is defined to be positive definite if and only if ~xTA~x > 0 for

nonzero ~x. Which of these matrices are positive definite?(
1 2

2 1

)
,

(
1 −2

−2 6

)
,

(
−1 2

2 −6

)

Answer:

Only the second matrix. A useful test is positive eigenvalues. Another is principal determi-

nants all positive.

57. (5 points) Let A be a real symmetric 2× 2 matrix. Prove that the eigenvalues of A

are real numbers.

Answer:

Begin with A~x = λ~x. Take the conjugate of both sides to get a new equation. Because the

conjugate of a real matrix is itself, then the new equation looks like A~y = λ̄~y where ~y is

the conjugate of ~x. Formally, replace i by −i in the components of ~x to obtain ~y. Symbol

λ̄ is the complex conjugate of λ. Transpose this new equation to get ~yTA = λ̄~yT , possible

because A = AT . Taking dot products two ways gives ~y · A~x = λ~y · ~x = λ̄~y · ~x. Because

~y · ~x = ‖~x‖2 > 0, then we can cancel to get λ = λ̄, proving the eigenvalue λ is real.

58. (5 points) Let B be a real 3 × 4 matrix. Prove that the eigenvalues of BTB are

non-negative.

Answer:

Let A = BTB. An eigenpair (λ,~v) of A satisfies A~v = λ~v, ~v 6= ~0. Already known is that

the eigenvalue λ and the eigenvector ~v are real, because A = BTB is a symmetric matrix.

Compute ‖B~v‖2 = (B~v)T (B~v) = ~vTBTB~v = ~vTA~v = ~vTλ~v = λ‖~v‖2. Therefore, λ is

non-negative.

59. (5 points) The spectral theorem says that a symmetric matrix A can be factored into
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A = QDQT where Q is orthogonal and D is diagonal. Find Q and D for the symmetric

matrix A =

(
3 −1

−1 3

)
.

Answer:

Start with the equation r2−6r+8 = 0 having roots r = 2, 4. Compute the eigenpairs (2, ~v1),

(4, ~v2) where ~v1 =

(
1

1

)
and ~v2 =

(
−1

1

)
. The two vectors are orthogonal but not of unit

length. Unitize them to get ~u1 = 1√
2
~v1, ~u2 = 1√

2
~v2. Then Q =< ~u1|~u2 >= 1√

2

(
1 −1

1 1

)
,

D = diag(2, 4).

60. (5 points) Show that if B is an invertible matrix and A is similar to B, with

A = PBP−1, then A is invertible.

Answer:

The determinant product theorem applies to obtain |A| = |B| 6= 0, hence A is invertible.

61. (5 points) Write out the singular value decomposition for the matrix A =

(
2 2

−1 1

)
.

Answer:

A =

(
2 2

−1 1

)
=

(
1 0

0 1

)( √
8 0

0
√

2

)(
1√
2

(
1 −1

1 1

))T

62. (5 points) Strang’s Four Fundamental Subspaces are the nullspace of A, the nullspace

of AT , the row space of A and the column space of A. Describe, using a figure or drawing,

the locations in the matrices U , V of the singular value decomposition A = UΣV T which

are consumed by the four fundamental subspaces of A.

Answer:

A =< colspace(A)|nullspace(AT ) > Σ < rowspace(A)|nullspace(A) >T . The dimensions of

the spaces left to right are r, m− r, r, n− r, where A is m× n and r is the rank of A.

63. (5 points) Give examples for a vertical shear and a horizontal shear in the plane.

Expected is a 2× 2 matrix A which represents the linear transformation.

Answer:
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(
1 k

0 1

)
is a horizontal shear,

(
1 0

k 1

)
is a vertical shear

64. (5 points) Give examples for clockwise and counterclockwise rotations in the plane.

Expected is a 2× 2 matrix A which represents the linear transformation.

Answer:(
cos θ sin θ

− sin θ cos θ

)
for θ > 0 rotates clockwise and for θ < 0 rotates counter clockwise.

65. (5 points) Let the linear transformation T from R3 to R3 be defined by its action on

three independent vectors:

T


3

2

0


 =

4

4

2

 , T


0

2

1


 =

4

0

2

 , T


1

2

1


 =

5

1

1

 .

Find the unique 3 × 3 matrix A such that T is defined by the matrix multiply equation

T (~x) = A~x.

Answer:

A

 3 0 1

2 2 2

0 1 1

 =

 4 4 5

4 0 1

2 2 1

 can be solved for matrixA. The answer isA =

 1 1
2

3

1 1
2
−1

−1 5
2
−3

.

66. (5 points) Let A be an m×n matrix. Denote by S1 the row space of of A and S2 the

column space of A. Prove that T : S1 → S2 defined by T (~x) = A~x is one-to-one and onto.

Answer:

Suppose ~x is in the rowspace. The fundamental theorem of linear algebra says ~x is perpen-

dicular to the nullspace. of A. So, if ~x1, ~x2 are vectors in the rowspace of A and A~x1) = A(~x2

then A(~x1 − ~x2) = ~0. This implies ~x = ~x1 − ~x2 belongs to the nullspace of A. But ~x is a

linear combination of vectors in S1, so it is in S1, which is perpendicular to the nullspace.

The intersection of V and V ⊥ is the zero vector, so ~x = ~0, which says ~x1 = ~x2, proving T is

one-to-one.

The proof for onto is done by solving the equation A~x = ~y where ~y is any vector in the

column space of A. We have to find ~x in S1 that solves the equation. Select any ~z such

that ~y = A~z. Because the rowspace is perpendicular to the nullspace, then there are unique
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vectors ~x, ~u such that ~z = ~x+ ~u, and ~u is in the nullspace while ~x is in the rowspace. Then

~y = A~z = A~x + A~u = A~x + ~0 = A~x. We have solved the equation for ~x in S1. The proof is

complete.

Essay Questions

67. (5 points) Define an Elementary Matrix. Display the fundamental matrix multiply

equation which summarizes a sequence of swap, combo, multiply operations, transforming a

matrix A into a matrix B.

Answer:

An elementary matrix is the matrix E resulting from one elementary row operation (swap,

combination, multiply) performed on the identity matrix I. The fundamental equation looks

like Ek · · ·E2E1A = B, but this is not the complete answer, because the elementary matrices

have to be explained, relative to the elementary row operations which transformed A into

B.

68. (5 points) Let V be a vector space and S a subset of V . Define what it means for

S to be a subspace of V . The definition is sometimes called the Subspace Criterion, a

theorem with three requirements, with the conclusion that S is a subspace of V .

Answer:

The definition can be found in the textbook, although the naming convention might not be

the same. In some books it is taken as the definition, in other books it is derived from a

different definition, then recorded as a theorem called the subspace criterion: (1) Zero is in

S; (2) Sums of vectors in S are in S; (3) Scalar multiples of vectors in S are in S. The

important underlying assumption is that addition and scalar multiplication are inherited

from V .

69. (5 points) The null space S of an m × n matrix M is a subspace of Rn. This is

called the Kernel Theorem, and it is proved from the Subspace Criterion. Both theorems

conclude that some subset is a subspace, but they have different hypotheses. Distinguish

the Kernel theorem from the Subspace Criterion, as viewed from hypotheses.

Answer:
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The distinction is that the kernel theorem applies only to fixed vectors, that is, the vector

space Rn, whereas the subspace criterion applies to any vector space.

70. (5 points) Least squares can be used to find the best fit line for the points (1, 2),

(2, 2), (3, 0). Without finding the line equation, describe how to do it, in a few sentences.

Answer:

Find a matrix equation A~x = ~b using the line equation y = v1x + v2 where ~x =

(
v1

v2

)
.

Then solve the normal equation ATA~v = AT~b. A full solution is expected, with a formula

for A. But don’t solve the normal equation.

71. (5 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The

dimensions of the four subspaces, and Part 2: The orthogonality equations for the four

subspaces.

Answer:

Part 1. The dimensions are n − r, r, rm − r for nullspace(A), colspace(A), rowspace(A),

nullspace(AT ). Part 2. The orthogonality relation is rowspace ⊥ nullspace, for both A and

AT . A full statement is expected, not the brief one given here.

72. (5 points) Display the equation for the Singular Value Decomposition (SVD), then

cite the conditions for each matrix. Finish with a written description of how to construct

the matrices in the SVD.

Answer:

Let r be the rank of an m × n matrix A. Then A = UΣV T , where A~vi = σi~ui, U =<

~u1| · · · |~un >, V =< ~v1| · · · |~vm > are orthogonal and Σ = diag(σ1, . . . , σr, 0, . . . , 0 >. The

singular values are σi =
√
λi where {λi} is the list of real nonnegative eigenvalues of ATA.

Only the positive values σi, i = 1, . . . , r where r is the rank of A are entered into matrix Σ,

and they must be ordered in decreasing order. Because there is a full set of n orthonormal

eigenpairs (λ,~v) for the n×n symmetric matrix ATA, the matrix V is constructed from the

list of orthonormal eigenvectors {~vi‖ni=1. Matrix U is constructed from an orthonormal basis

{~ui}mi=1, obtained from Gram-Schmidt, starting with the list of orthogonal vectors ~ui =
σi
A~vi,

i = 1, . . . , r, after appending to the list m − r independent vectors to complete a basis of

Rm.

73. (5 points) State the Spectral Theorem for symmetric matrices. Include the impor-
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tant results included in the spectral theorem, about real eigenvalues and diagonalizability.

Then discuss the spectral decomposition.

Answer:

A real symmetric n × n matrix A has only real eigenvalues. Marix A has n eigenpairs, in

short it is is diagonalizable. To each eigenvalue of multiplicity k, there are k independent

eigenvectors. These eigenvectors span a subspace of dimension k which by Gram-Schmidt is

spanned by k orthonormal vectors. Two such subspaces corresponding to different eigenval-

ues are orthogonal. The spectral decomposition of A is A = QDQT where D is a diagonal

matrix of eigenvalues and Q is an orthogonal matrix of corresponding eigenvectors.
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