1. (Chapter 1: 60 points) Consider the system $A \vec{u}=\vec{b}$ with $\vec{u}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$ defined by

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3}+x_{4}=2 \\
& 4 x_{1}+3 x_{2}+8 x_{3}+x_{4}=4 \\
& 6 x_{1}+3 x_{2}+8 x_{3}+x_{4}=2
\end{aligned}
$$

Solve the following parts:
(a) [10\%] Find the reduced row echelon form of the augmented matrix.
(b) $[10 \%]$ Identify the free variables and the lead variables.
(c) $[10 \%]$ Display a vector formula for a particular solution \vec{u}_{p}.
(d) $[10 \%]$ Display a vector formula for the homogeneous solution \vec{u}_{h}.
(e) $[10 \%]$ Identify each of Strang's Special Solutions.
(f) [10\%] Display the vector general solution \vec{u}, using superposition.

2. (Chapter 2: 40 points)

(a) [10\%] Describe for $n \times n$ matrices two different methods for finding the matrix inverse.
(b) [20\%] Apply the two methods to find the inverse of the matrix $A=\left(\begin{array}{rr}1 & -3 \\ 0 & 2\end{array}\right)$.
(c) $[10 \%]$ Find the inverse of the transpose of the matrix in part (b).
3. (Chapter 3: 30 points) Define matrix A and vector \vec{b} by the equations

$$
A=\left(\begin{array}{rrr}
-2 & 3 & 0 \\
0 & -2 & 4 \\
1 & 0 & -2
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Find the value of x_{3} by Cramer's Rule in the system $A \vec{x}=\vec{b}$.
4. (Chapters 1 to 4: 30 points) Let

$$
A=\left(\begin{array}{rrr}
0 & 0 & 0 \\
-3 & -2 & -1 \\
-1 & 0 & 0 \\
6 & 6 & 3 \\
2 & 2 & 1
\end{array}\right)
$$

(a) Check the independence tests below which apply to prove that the column vectors of the matrix A are independent in the vector space \mathcal{R}^{4}.
(b) Show the details for one of the independence tests that you checked.Wronskian test Wronskian of $\vec{f}_{1}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$ nonzero at $x=x_{0}$ implies independence of $\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$.Rank test
Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augmented matrix has rank 3 .

Determinant test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their square augmented matrix has nonzero determinant.Euler Atom test
Sample test
Any finite set of distinct atoms is independent.
Functions $\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$ are independent if a sampling matrix has nonzero determinant.Pivot test
Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augmented matrix A has 3 pivot columns.

Orthogonality test A set of nonzero pairwise orthogonal vectors is independent.

Combination test A list of vectors is independent if each vector is not a linear combination of the preceding vectors.
5. (Chapters 2, 4: 20 points) Define S to be the set of all vectors \vec{x} in \mathcal{R}^{3} such that $x_{1}+x_{3}=x_{2}, x_{3}=0$ and $x_{3}+x_{2}=x_{1}$. Prove that S is a subspace of \mathcal{R}^{3}.
6. (Chapter 6: 40 points) Let S be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) .
$$

Find a Gram-Schmidt orthonormal basis of S.
7. (Chapters 1 to 6: 30 points) Let A be an $m \times n$ matrix and assume that $A^{T} A$ has nonzero determinant. Prove that the rank of A equals n.
8. (Chapter 5: 40 points) The matrix A below has eigenvalues 3,3 and 3 . Test A to see it is diagonalizable, and if it is, then display three eigenpairs of A.

$$
A=\left(\begin{array}{rrr}
4 & 1 & 1 \\
-1 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

9. (Chapter 6: 30 points) Let W be the column space of $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)$ and let $\overrightarrow{\mathbf{b}}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$. Let $\overrightarrow{\hat{\mathbf{b}}}$ be the near point to $\overrightarrow{\mathbf{b}}$ in the subspace W. Find $\overrightarrow{\hat{\mathbf{b}}}$.
10. (Chapter 6: 30 points) Let Q be an orthogonal matrix with columns $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$. Let D be a diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Prove that the 3×3 matrix $A=Q D Q^{T}$ satisfies $A=\lambda_{1} \vec{q}_{1} \vec{q}_{1}^{T}+\lambda_{2} \vec{q}_{2} \vec{q}_{2}^{T}+\lambda_{3} \vec{q}_{3} \vec{q}_{3}^{T}$.
11. (Chapter 7: 30 points) The spectral theorem says that a symmetric matrix A can be factored into $A=Q D Q^{T}$ where Q is orthogonal and D is diagonal. Find Q and D for the symmetric matrix $A=\left(\begin{array}{cc}4 & -1 \\ -1 & 4\end{array}\right)$.
12. (Chapter 7: 30 points) Write out the singular value decomposition for the matrix $A=\left(\begin{array}{rr}2 & 2 \\ -1 & 1\end{array}\right)$.
13. (Chapter 4: 30 points) Let the linear transformation T from \mathcal{R}^{3} to \mathcal{R}^{3} be defined by its action on three independent vectors:

$$
T\left(\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
4 \\
4 \\
2
\end{array}\right), T\left(\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
5 \\
1 \\
1
\end{array}\right), T\left(\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right) .
$$

Find the unique 3×3 matrix A such that T is defined by the matrix multiply equation $T(\vec{x})=A \vec{x}$.
14. (Chapter 4, 7: 40 points) Let A be an $m \times n$ matrix. Denote by S_{1} the row space of of A and S_{2} the column space of A. It is known that S_{1} and S_{2} have dimension
$r=\operatorname{rank}(A)$. Let $\vec{p}_{1}, \ldots, \vec{p}_{r}$ be a basis for S_{1} and let $\vec{q}_{1}, \ldots, \vec{q}_{r}$ be a basis for S_{2}. For example, select the pivot columns of A^{T} and A, respectively. Define $T: S_{1} \rightarrow S_{2}$ initially by $T\left(\vec{p}_{i}\right)=\vec{q}_{i}, \quad i=1, \ldots, r$. Extend T to all of S_{1} by linearity, which means the final definition is

$$
T\left(c_{1} \vec{p}_{1}+\cdots+c_{r} \vec{p}_{r}\right)=c_{1} \vec{q}_{1}+\cdots+c_{r} \vec{q}_{r} .
$$

Prove that T is one-to-one and onto.
15. (Chapter 4: 20 points) Least squares can be used to find the best fit line for the points $(1,2),(2,2),(3,0)$. Without finding the line equation, describe how to do it, in a few sentences.
16. (Chapters 1 to 7: 20 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.
17. (Chapter 7: 20 points) State the Spectral Theorem for symmetric matrices. Include the important results included in the spectral theorem, about real eigenvalues and diagonalizability. Then discuss the spectral decomposition.

