MATH 2270-2 Final Exam Spring 2016

NAME (please print):

QUESTION	VALUE	SCORE
1	60	
2	40	
3	30	
4	30	
5	20	
6	40	
7	30	
8	40	
9	30	
10	30	
11	30	
12	30	
13	30	
14	40	
15	20	
16	20	
17	20	
TOTAL	540	

No books, notes or electronic devices, please.

The questions have credits which reflect the time required to write the solution.

If you must write a solution out of order or on the back side, then supply a road map.

Solutions are expected to include readable and convincing details. A correct answer without details earns 25%.

Expect about 3 to 10 minutes per problem. Final exam problems may have multiple parts.

1. (Chapter 1: 60 points) Consider the system
$$A\vec{u} = \vec{b}$$
 with $\vec{u} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ defined by

$$2x_1 + 3x_2 + 4x_3 + x_4 = 2$$

$$4x_1 + 3x_2 + 8x_3 + x_4 = 4$$

$$6x_1 + 3x_2 + 8x_3 + x_4 = 2$$

Solve the following parts:

- (a) [10%] Find the reduced row echelon form of the augmented matrix.
- (b) [10%] Identify the free variables and the lead variables.
- (c) [10%] Display a vector formula for a particular solution \vec{u}_p .
- (d) [10%] Display a vector formula for the homogeneous solution \vec{u}_h .
- (e) [10%] Identify each of Strang's Special Solutions.
- (f) [10%] Display the vector general solution \vec{u} , using superposition.

2. (Chapter 2: 40 points)

- (a) [10%] Describe for $n \times n$ matrices two different methods for finding the matrix inverse.
- (b) [20%] Apply the two methods to find the inverse of the matrix $A = \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix}$.
- (c) [10%] Find the inverse of the transpose of the matrix in part (b).

3. (Chapter 3: 30 points) Define matrix A and vector \vec{b} by the equations

$$A = \begin{pmatrix} -2 & 3 & 0 \\ 0 & -2 & 4 \\ 1 & 0 & -2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Find the value of x_3 by Cramer's Rule in the system $A\vec{x} = \vec{b}$.

4. (Chapters 1 to 4: 30 points) Let

$$A = \begin{pmatrix} 0 & 0 & 0 \\ -3 & -2 & -1 \\ -1 & 0 & 0 \\ 6 & 6 & 3 \\ 2 & 2 & 1 \end{pmatrix}$$

(a) Check the independence tests below which apply to prove that the column vectors of the matrix A are independent in the vector space \mathbb{R}^4 .

(b) Show the details for one of the independence tests that you checked.

Wronskian test	Wronskian of $\vec{f_1}, \vec{f_2}, \vec{f_3}$ nonzero at $x = x_0$ implies inde-	
	pendence of $\vec{f_1}, \vec{f_2}, \vec{f_3}$.	
Rank test	Vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are independent if their augmented	
	matrix has rank 3.	
Determinant test	Vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are independent if their square aug-	
	mented matrix has nonzero determinant.	
Euler Atom test	Any finite set of distinct atoms is independent.	
Sample test	Functions $\vec{f_1}$, $\vec{f_2}$, $\vec{f_3}$ are independent if a sampling matrix	
	has nonzero determinant.	
Pivot test	Vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are independent if their augmented	
	matrix A has 3 pivot columns.	
Orthogonality test	A set of nonzero pairwise orthogonal vectors is	
Ç v	independent.	
Combination test	A list of vectors is independent if each vector is not a	
	linear combination of the preceding vectors.	

5. (Chapters 2, 4: 20 points) Define S to be the set of all vectors \vec{x} in \mathcal{R}^3 such that $x_1 + x_3 = x_2, x_3 = 0$ and $x_3 + x_2 = x_1$. Prove that S is a subspace of \mathcal{R}^3 .

6. (Chapter 6: 40 points) Let S be the subspace of \mathbb{R}^4 spanned by the vectors

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Find a Gram-Schmidt orthonormal basis of S.

7. (Chapters 1 to 6: 30 points) Let A be an $m \times n$ matrix and assume that A^TA has nonzero determinant. Prove that the rank of A equals n.

8. (Chapter 5: 40 points) The matrix A below has eigenvalues 3, 3 and 3. Test A to see it is diagonalizable, and if it is, then display three eigenpairs of A.

$$A = \left(\begin{array}{rrr} 4 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right)$$

- 9. (Chapter 6: 30 points) Let W be the column space of $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$ and let
- $\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. Let $\hat{\mathbf{b}}$ be the near point to $\vec{\mathbf{b}}$ in the subspace W. Find $\hat{\mathbf{b}}$.

10. (Chapter 6: 30 points) Let Q be an orthogonal matrix with columns $\vec{q}_1, \vec{q}_2, \vec{q}_3$. Let D be a diagonal matrix with diagonal entries $\lambda_1, \lambda_2, \lambda_3$. Prove that the 3×3 matrix $A = QDQ^T$ satisfies $A = \lambda_1 \vec{q}_1 \vec{q}_1^T + \lambda_2 \vec{q}_2 \vec{q}_2^T + \lambda_3 \vec{q}_3 \vec{q}_3^T$.

11. (Chapter 7: 30 points) The spectral theorem says that a symmetric matrix A can be factored into $A = QDQ^T$ where Q is orthogonal and D is diagonal. Find Q and D for the symmetric matrix $A = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$.

- 12. (Chapter 7: 30 points) Write out the singular value decomposition for the matrix
- $A = \left(\begin{array}{cc} 2 & 2 \\ -1 & 1 \end{array}\right).$

13. (Chapter 4: 30 points) Let the linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 be defined by its action on three independent vectors:

$$T\left(\begin{pmatrix} 3\\2\\0 \end{pmatrix}\right) = \begin{pmatrix} 4\\4\\2 \end{pmatrix}, T\left(\begin{pmatrix} 0\\2\\1 \end{pmatrix}\right) = \begin{pmatrix} 5\\1\\1 \end{pmatrix}, T\left(\begin{pmatrix} 1\\2\\1 \end{pmatrix}\right) = \begin{pmatrix} 4\\0\\2 \end{pmatrix}.$$

Find the unique 3×3 matrix A such that T is defined by the matrix multiply equation $T(\vec{x}) = A\vec{x}$.

14. (Chapter 4, 7: 40 points) Let A be an $m \times n$ matrix. Denote by S_1 the row space of A and S_2 the column space of A. It is known that S_1 and S_2 have dimension $r = \operatorname{rank}(A)$. Let $\vec{p}_1, \ldots, \vec{p}_r$ be a basis for S_1 and let $\vec{q}_1, \ldots, \vec{q}_r$ be a basis for S_2 . For example, select the pivot columns of A^T and A, respectively. Define $T: S_1 \to S_2$ initially by $T(\vec{p}_i) = \vec{q}_i, \quad i = 1, \ldots, r$. Extend T to all of S_1 by linearity, which means the final definition is

$$T(c_1\vec{p}_1 + \dots + c_r\vec{p}_r) = c_1\vec{q}_1 + \dots + c_r\vec{q}_r.$$

Prove that T is one-to-one and onto.

15. (Chapter 4: 20 points) Least squares can be used to find the best fit line for the points (1,2), (2,2), (3,0). Without finding the line equation, describe how to do it, in a few sentences.

16. (Chapters 1 to 7: 20 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.

17. (Chapter 7: 20 points) State the Spectral Theorem for symmetric matrices. Include the important results included in the spectral theorem, about real eigenvalues and diagonalizability. Then discuss the spectral decomposition.