1. (Chapter 1: 50 points) Consider the system $A \vec{u}=\vec{b}$ with $\vec{u}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ defined by

$$
\begin{array}{r}
x_{1}+3 x_{2}+4 x_{3}+x_{4}+x_{5}=2 \\
2 x_{1}+x_{2}+8 x_{3}+x_{4}+2 x_{5}=4 \\
2 x_{1}+2 x_{2}+8 x_{3}+x_{4}+x_{5}=2
\end{array}
$$

Solve the following parts (a) to (e):
(a) $[10 \%]$ Find the reduced row echelon form of the augmented matrix.
$\qquad$
(b) [10\%] Write the scalar equations corresponding to the answer in (a). Then identify the free variables and the lead variables.
$\qquad$
(c) [10\%] Display a formula for the vector general solution $\vec{u}$.
$\qquad$
(d) [10\%] Extract from the answer in (c) vector formulas for a particular solution $\vec{u}_{p}$ and the homogeneous solution $\vec{u}_{h}$.
(e) $[10 \%]$ Extract from the answer in (d) a vector solution basis for $A \vec{u}=\overrightarrow{0}$. These vectors are called Strang's Special Solutions.
$\qquad$

## 2. (Chapter 2: 40 points)

Define $A=\left(\begin{array}{ll}1 & 4 \\ 1 & 5\end{array}\right)$ and $B=A+A^{T}$, where $A^{T}$ is the transpose of $A$.
(a) $[20 \%]$ Apply two different methods to find the inverse of the matrix $A$.
(b) $[20 \%]$ Compute $\left(B^{-1}\right)^{T}$.
3. (Chapter 3: 30 points) Let $P, Q, R$ be real numbers. Define matrix $A$ and vector $\vec{b}$ by the equations

$$
A=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
0 & -1 & 4 \\
1 & 0 & -2
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
P \\
Q \\
R
\end{array}\right)
$$

Find the value of $x_{2}$ by Cramer's Rule in the system $A \vec{x}=\vec{b}$.
4. (Chapters 1 to 4: 20 points) It is known that functions $x, \cos (x), e^{x}$ are independent in the vector space $V$ of all functions on $(-\infty, \infty)$. Define functions in $V$ by the equations $f_{1}(x)=x+e^{x}, f_{2}(x)=2 x-e^{x}, f_{3}(x)=3 \cos (x)+x+e^{x}$.

Definition: An Euler solution atom is a base atom multiplied by a factor $x^{n} e^{a x}$ where $n=$ $0,1,2, \ldots$ and $a$ is a real constant. A base atom is one of $1, \cos (b x), \sin (b x)$ where $b>0$ is real.

Check the independence tests below which apply to prove that the functions $f_{1}, f_{2}, f_{3}$ are independent in the vector space $V$. Don't check one which won't work!

## Wronskian test <br> Euler Solution Atom test <br> Sample test

Wronskian of $\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$ nonzero at $x=x_{0}$ implies independence of $\vec{f}_{1}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$.
Any finite set of distinct Euler atoms is independent.
Functions $\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}$ are independent if a sampling matrix has nonzero determinant.
5. (Chapters 1 to 4: 30 points) It is known that functions $x, \cos (x), e^{x}$ are independent in the vector space $V$ of all functions on $(-\infty, \infty)$. Define functions in $V$ by the equations $f_{1}(x)=x+e^{x}, f_{2}(x)=2 x-e^{x}, f_{3}(x)=3 \cos (x)+x+e^{x}$.
(a) [10\%] Independence of the functions $f_{1}, f_{2}, f_{3}$ in the vector space $V$ can be established
using the coordinate map

$$
c_{1} x+c_{2} e^{x}+c_{3} \cos (x) \text { maps into }\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Reformulate the independence of functions $f_{1}, f_{2}, f_{3}$ into independence of column vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ in the vector space $\mathcal{R}^{3}$.
(b) $[10 \%]$ Show details for one of the tests below applied to $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, defined in part (a).
(c) $[10 \%]$ Check all tests below that may be applied to $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, as defined in part (a). Don't check a test which won't work!Rank test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augmented matrix has rank 3 .Determinant test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their square augmented matrix has nonzero determinant.Pivot test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augmented matrix $A$ has 3 pivot columns.


Orthogonality test $A$ set of nonzero pairwise orthogonal vectors is independent.
$\square$ Combination test A list of vectors is independent if each vector is not a linear combination of the preceding vectors.
6. (Chapters 2, 4: 20 points) Define $S$ to be the set of all vectors $\vec{x}$ in $\mathcal{R}^{3}$ such that $x_{1}+2 x_{3}-x_{2}=0, x_{3}=0$ and $x_{3}+x_{2}=x_{1}$. Supply the proof details which verify that $S$ is a subspace of $\mathcal{R}^{3}$.
7. (Chapter 6: 40 points) Let $S$ be the subspace of $\mathbb{R}^{4}$ spanned by the vectors

$$
\vec{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)
$$

(a) [10\%] Explain, by citing a theorem, why $S$ is a subspace.
(b) $[30 \%]$ Find a Gram-Schmidt orthonormal basis $\vec{u}_{1}, \vec{u}_{2}, \vec{v}_{3}$ for subspace $S$.
8. (Chapters 1 to 6: 30 points) Let $A$ be an $m \times n$ matrix and assume that $A^{T} A$ has rank $n-1$. Prove that the rank of $A$ cannot equal $n$.
9. (Chapter 5: 40 points) The matrix $A$ below has eigenvalues 2,3 and 3 . Compute all eigenpairs of $A$. Is $A$ diagonalizable?

$$
A=\left(\begin{array}{rrr}
4 & 1 & 1 \\
-1 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

10. (Chapter 6: 30 points) Define $A=\left(\begin{array}{rr}1 & 1 \\ 1 & -1 \\ 1 & 0\end{array}\right)$ and $\overrightarrow{\mathbf{b}}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$. Let $W$ be the column space of $A$. Write the normal equations for the inconsistent problem $A \vec{x}=\vec{b}$ and solve for the least squares solution $\overrightarrow{\hat{x}}$.

Remark. Vector $\overrightarrow{\hat{\mathbf{b}}}=\mathbf{A} \tilde{\hat{\mathbf{x}}}$ is the near point to $\overrightarrow{\mathbf{b}}$ in the subspace $W$.
11. (Chapter 6: 30 points) Given vectors $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$ in $\mathcal{R}^{3}$, define

$$
A=2 \vec{q}_{1} \vec{q}_{1}^{T}+5 \vec{q}_{2} \vec{q}_{2}^{T}+7 \vec{q}_{3} \vec{q}_{3}^{T} .
$$

(a) $[10 \%]$ Prove that $A$ is symmetric.

2in
(b) [20\%] The Spectral Theorem for symmetric matrices produces a similar formula where

2,5,7 are replaced by the eigenvalues of $A$. Write the formula for $3 \times 3$ matrices $A$ and explain all the symbols used in the formula.
12. (Chapter 7: 30 points) The spectral theorem says that a symmetric matrix $A$ satisfies $A Q=Q D$ where $Q$ is orthogonal and $D$ is diagonal. Find $Q$ and $D$ for the symmetric matrix $A=\left(\begin{array}{cc}4 & -1 \\ -1 & 4\end{array}\right)$.
13. (Chapter 7: 40 points) Write out the singular value decomposition for the matrix $A=\left(\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right)$.
14. (Chapter 4: 30 points) Let the linear transformation $T$ from $\mathcal{R}^{2}$ to $\mathcal{R}^{2}$ be defined by its action on two independent vectors:

$$
T\left(\binom{3}{2}\right)=\binom{4}{2}, \quad T\left(\binom{2}{1}\right)=\binom{5}{1} .
$$

Find the unique $2 \times 2$ matrix $A$ such that $T$ is defined by the matrix multiply equation $T(\vec{x})=A \vec{x}$
15. (Chapter 4, 7: 40 points) Let $A$ be an $m \times n$ matrix. Denote by $S_{1}$ the row space of of $A$ and $S_{2}$ the column space of $A$. Using only the Pivot Theorem and the Toolkit of swap, combo, multiply, prove that $S_{1}$ and $S_{2}$ have the same dimension.
16. (Chapter 4: 20 points) Least squares can be used to find the best fit line $y=a x+b$ for the points $(1,2),(2,2),(3,0)$. Find the line equation by the method of least squares.
17. (Chapters 1 to 7: 20 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.

