Draft 30 March 2017.

No more problems added after 3 April. Expect corrections until the exam date.

Problem 1. (5 points) Define matrix A and vector \vec{b} by the equations

$$
A=\left(\begin{array}{rr}
-2 & 3 \\
0 & -4
\end{array}\right), \quad \vec{b}=\binom{-3}{5} .
$$

For the system $A \vec{x}=\vec{b}$, find x_{1}, x_{2} by Cramer's Rule, showing all details (details count $75 \%)$.
Problem 2. (5 points) Assume given 3×3 matrices A, B. Suppose $E_{3} E_{2} E_{1} A=B A^{2}$ and E_{1}, E_{2}, E_{3} are elementary matrices representing respectively a multiply by 3 , a swap and a combination. Assume $\operatorname{det}(B)=3$. Find all possible values of $\operatorname{det}(-2 A)$.
Problem 3. (5 points) Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$. Show the details of two different methods for finding A^{-1}.
Problem 4. (5 points) Find a factorization $A=L U$ into lower and upper triangular matrices for the matrix $A=\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$.
Problem 5. (5 points) Explain how the span theorem applies to show that the set S of all linear combinations of the functions $\cosh x, \sinh x$ is a subspace of the vector space V of all continuous functions on $-\infty<x<\infty$.
Problem 6. (5 points) Write a proof that the subset S of all solutions \vec{x} in \mathcal{R}^{n} to a homogeneous matrix equation $A \vec{x}=\overrightarrow{0}$ is a subspace of \mathcal{R}^{n}. This is called the kernel theorem.
Problem 7. (5 points) Using the subspace criterion, write two hypotheses that imply that a set S in a vector space V is not a subspace of V. The full statement of three such hypotheses is called the Not a Subspace Theorem.
Problem 8. (5 points) Report which columns of A are pivot columns: $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$.

Problem 9. (5 points) Find the complete solution $\vec{x}=\vec{x}_{h}+\vec{x}_{p}$ for the nonhomogeneous system

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right) .
$$

The homogeneous solution \vec{x}_{h} is a linear combination of Strang's special solutions. Symbol \vec{x}_{p} denotes a particular solution.
Problem 10. (5 points) Find the reduced row echelon form of the matrix $A=$ $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 2\end{array}\right)$.
Problem 11. (5 points) A 10×13 matrix A is given and the homogeneous system $A \vec{x}=\overrightarrow{0}$ is transformed to reduced row echelon form. There are 7 lead variables. How many free variables?
Problem 12. (5 points) The rank of a 10×13 matrix A is 7 . Find the nullity of A.
Problem 13. (5 points) Given a basis $\vec{v}_{1}=\binom{3}{2}, \vec{v}_{2}=\binom{4}{4}$ of \mathcal{R}^{2}, and $\vec{v}=\binom{10}{4}$, then $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$ for a unique set of coefficients c_{1}, c_{2}, called the coordinates of \vec{v} relative to the basis \vec{v}_{1}, \vec{v}_{2}. Compute c_{1} and c_{2}.
Problem 14. (5 points) Determine independence or dependence for the list of vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
4
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

Problem 15. (5 points) Check the independence tests which apply to prove that 1 , x^{2}, x^{3} are independent in the vector space V of all functions on $-\infty<x<\infty$.

Wronskian test Wronskian of f_{1}, f_{2}, f_{3} nonzero at $x=x_{0}$ implies independence of f_{1}, f_{2}, f_{3}.

Rank test

 Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augmented matrix has rank 3 .Determinant test Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their square augmented matrix has nonzero determinant.
Euler Solution Test Any finite set of distinct Euler solution atoms is independent.

Pivot test
Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent if their augmented matrix A has 3 pivot columns.

Problem 16. (5 points) Define S to be the set of all vectors \vec{x} in \mathcal{R}^{3} such that $x_{1}+x_{3}=0$ and $x_{3}+x_{2}=x_{1}$. Prove that S is a subspace of \mathcal{R}^{3}.
Problem 17. (5 points) The 5×6 matrix A below has some independent columns. Report the independent columns of A, according to the Pivot Theorem.

$$
A=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
-3 & 0 & 0 & -2 & 1 & -1 \\
-1 & 0 & 0 & 0 & 1 & 0 \\
6 & 0 & 0 & 6 & 0 & 3 \\
2 & 0 & 0 & 2 & 0 & 1
\end{array}\right)
$$

Problem 18. (5 points) Let A be an $m \times n$ matrix with independent columns. Prove that $A^{T} A$ is invertible.
Problem 19. (5 points) Let A be an $m \times n$ matrix with $A^{T} A$ invertible. Prove that the columns of A are independent.
Problem 20. (5 points) Let A be an $m \times n$ matrix and \vec{v} a vector orthogonal to the nullspace of A. Prove that \vec{v} must be in the row space of A.
Problem 21. (5 points) Consider a 3×3 real matrix A with eigenpairs

$$
\left(-1,\left(\begin{array}{r}
5 \\
6 \\
-4
\end{array}\right)\right), \quad\left(2 i,\left(\begin{array}{l}
i \\
2 \\
0
\end{array}\right)\right), \quad\left(-2 i,\left(\begin{array}{r}
-i \\
2 \\
0
\end{array}\right)\right) .
$$

Display an invertible matrix P and a diagonal matrix D such that $A P=P D$.
Problem 22. (5 points) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrrr}0 & -12 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 5 & 1 & 3\end{array}\right)$.
To save time, do not find eigenvectors!
Problem 23. (5 points) The matrix $A=\left(\begin{array}{rrr}0 & -12 & 3 \\ 0 & 1 & -1 \\ 0 & 1 & 3\end{array}\right)$ has eigenvalues $0,2,2$ but it is not diagonalizable, because $\lambda=2$ has only one eigenpair. Find an eigenvector for $\lambda=2$. To save time, don't find the eigenvector for $\lambda=0$.
Problem 24. (5 points) Find the two eigenvectors corresponding to complex eigenvalues $-1 \pm 2 i$ for the 2×2 matrix $A=\left(\begin{array}{rr}-1 & 2 \\ -2 & -1\end{array}\right)$.

Problem 25. (5 points) Let $A=\left(\begin{array}{rr}-7 & 4 \\ -12 & 7\end{array}\right)$. Circle possible eigenpairs of A.

$$
\left(1,\binom{1}{2}\right), \quad\left(2,\binom{2}{1}\right), \quad\left(-1,\binom{2}{3}\right)
$$

Problem 26. (5 points) Let I denote the 3×3 identity matrix. Assume given two 3×3 matrices B, C, which satisfy $C P=P B$ for some invertible matrix P. Let C have eigenvalues $-1,1,5$. Find the eigenvalues of $A=2 I+3 B$.
Problem 27. (5 points) Let A be a 3×3 matrix with eigenpairs

$$
\left(4, \vec{v}_{1}\right), \quad\left(3, \vec{v}_{2}\right), \quad\left(1, \vec{v}_{3}\right)
$$

Let P denote the augmented matrix of the eigenvectors $\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{1}$, in exactly that order. Display the answer for $P^{-1} A P$. Justify the answer with a sentence.
Problem 28. (5 points) The matrix A below has eigenvalues 3,3 and 3 . Test A to see it is diagonalizable, and if it is, then display Fourier's model for A.

$$
A=\left(\begin{array}{rrr}
4 & 1 & 1 \\
-1 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

Problem 29. (5 points) Assume A is a given 4×4 matrix with eigenvalues $0,1,3 \pm 2 i$. Find the eigenvalues of $4 A-3 I$, where I is the identity matrix.
Problem 30. (5 points) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrrrr}0 & -2 & -5 & 0 & 0 \\ 3 & 0 & -12 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 5 & 1 & 3\end{array}\right)$.
To save time, do not find eigenvectors!
Problem 31. (5 points) Consider a 3×3 real matrix A with eigenpairs

$$
\left(3,\left(\begin{array}{r}
13 \\
6 \\
-41
\end{array}\right)\right), \quad\left(2 i,\left(\begin{array}{l}
i \\
2 \\
0
\end{array}\right)\right), \quad\left(-2 i,\left(\begin{array}{r}
-i \\
2 \\
0
\end{array}\right)\right) .
$$

(1) [50\%] Display an invertible matrix P and a diagonal matrix D such that $A P=P D$.
(2) [50\%] Display a matrix product formula for A, but do not evaluate the matrix products, in order to save time.

Problem 32. (5 points) Assume two 3×3 matrices A, B have exactly the same characteristic equations. Let A have eigenvalues $2,3,4$. Find the eigenvalues of $(1 / 3) B-2 I$, where I is the identity matrix.
Problem 33. (5 points) Let 3×3 matrices A and B be related by $A P=P B$ for some invertible matrix P. Prove that the roots of the characteristic equations of A and B are identical.
Problem 34. (5 points) Find the eigenvalues of the matrix B :

$$
B=\left(\begin{array}{rrrr}
2 & 4 & -1 & 0 \\
0 & 5 & -2 & 1 \\
0 & 0 & 4 & 1 \\
0 & 0 & 1 & 4
\end{array}\right)
$$

No new questions beyond this point.Please check back at the course web site until 3 April, for corrections and added sample exam problems.

