
362

5.4 Independence, Span and Basis

The technical topics of independence, dependence and span apply to the
study of Euclidean spaces R2, R3, . . . , Rn and also to the continuous
function space C(E), the space of differentiable functions C1(E) and its
generalization Cn(E), and to general abstract vector spaces.

Basis and General Solution

The term basis has been introduced earlier for systems of linear algebraic
equations. To review, a basis is obtained from the vector general solution
~x of matrix equation A~x = ~0 by computing the partial derivatives ∂t1 ,
∂t2 , . . . of ~x, where t1, t2, . . . is the list of invented symbols assigned to
the free variables identified in rref(A).

The partial derivatives are special solutions to the homogeneous equa-
tion A~x = ~0. Knowing the special solutions is sufficient for writing out
the general solution. In summary:

A basis is an abbreviation or shortcut notation for the gen-
eral solution.

Deeper properties have been isolated for the list of special solutions ob-
tained from the partial derivatives ∂t1~x, ∂t2~x, . . . . The most important
properties are span and independence.

Independence, Span and Basis

A list of vectors ~v1, . . . , ~vk is said to span a vector space V (definition
on page 297), written

V = span(~v1, ~v2, . . . , ~vk),

provided V consists of exactly the set of all linear combinations

~v = c1~v1 + · · ·+ ck~vk.

The notion originates with the general solution ~v of a homogeneous ma-
trix system A~v = ~0, where the invented symbols t1, . . . , tk are the
constants c1, . . . , ck and the vector partial derivative list ∂t1~v, . . . , ∂tk~v
is the list of special solution vectors ~v1, . . . , ~vk.

Vectors ~v1, . . . , ~vk are said to be independent provided each linear
combination ~v = c1~v1 + · · · + ck~vk is represented by a unique set of
constants c1, . . . , ck. See pages 369 and 375 for independence tests.
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Definition 6 (Basis)
A basis of a vector space V is defined to be a list of independent vectors
~v1, . . . , ~vk which spans V . A basis is tested by two checkpoints:

1. The list of vectors ~v1, ~v2, . . . , ~vk is independent.

2. The vectors span V , written V = span(~v1, . . . , ~vk).

Bases are used to express the general solution of a linear problem. The
spanning condition means that every possible vector in V is a linear
combination of basis elements. The independence condition means
that linear combinations are uniquely represented, which, in practical
terms, means that the general solution expression has the fewest possible
terms.

The Vector Spaces Rn

The vector space Rn of n-element fixed column vectors (or row vec-
tors) is from the view of applications a storage system for organization
of numerical data sets that is equipped with an algebraic toolkit. The
organizational scheme induces a data structure onto the numerical data
set. In particular, whether needed or not, there are pre-defined opera-
tions of addition (+) and scalar multiplication (·) which apply to fixed
vectors. The two operations on fixed vectors satisfy the closure law and
in addition obey the eight algebraic vector space properties. We view the
vector space V = Rn as the data set consisting of data item packages.
The toolkit is the following set of eight algebraic properties.

Closure The operations ~X + ~Y and k ~X are defined and result in
a new vector which is also in the set V .

Addition ~X + ~Y = ~Y + ~X commutative
~X + (~Y + ~Z) = (~Y + ~X) + ~Z associative
Vector ~0 is defined and ~0 + ~X = ~X zero
Vector − ~X is defined and ~X + (− ~X) = ~0 negative

Scalar
multiply

k( ~X + ~Y ) = k ~X + k~Y distributive I
(k1 + k2) ~X = k1 ~X + k2 ~X distributive II
k1(k2 ~X) = (k1k2) ~X distributive III
1 ~X = ~X identity

The 8 Properties

.+

Toolkit

Operations

Set
Data

Figure 12. A Data Storage
System.
A vector space is a data set of data
item packages plus a storage system
which organizes the data. A toolkit is
provided consisting of operations +
and · plus 8 algebraic vector space
properties.
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Fixed Vectors and the Toolkit

Scalar multiplication of fixed vectors is commonly used for re-scaling,
especially to unit systems fps, cgs and mks. For instance, a numerical
data set of lengths recorded in meters (mks) is re-scaled to centimeters
(cgs) using scale factor k = 100.

Addition and subtraction of fixed vectors is used in a variety of cal-
culations, which includes averages, difference quotients and calculus op-
erations like integration.

Planar Plots and the Toolkit

The data set for a plot problem consists of the plot points in R2, which
are the dots for the connect-the-dots graphic. Assume the function y(x)
to be plotted comes from a differential equation like y′ = f(x, y), then
Euler’s numerical method could be used for the sequence of dots in the
graphic. In this case, the next dot is represented as ~v2 = ~v1 + ~E(~v1).
Symbol ~v1 is the previous dot and symbol ~E(~v1) is the Euler increment.
We define

~v1 =

(
x0
y0

)
, ~E(~v1) = h

(
1

f(x0, y0)

)
,

~v2 = ~v1 + ~E(~v1) =

(
x0 + h

y0 + hf(x0, y0)

)
.

A step size h = 0.05 is commonly used. The Euler increment ~E(~v1) is
given as scalar multiplication by h against an R2-vector which involves
evaluation of f at the previous dot ~v1.

In summary, the dots for the graphic of y(x) form a data set in the
vector space R2. The dots are obtained by algorithm rules, which are
easily expressed by vector addition (+) and scalar multiplication (·). The
8 properties of the toolkit were used in a limited way.

Digital Photographs

A digital photo consists of many pixels arranged in a two dimensional
array. Structure can be assigned to the photo by storing the pixel digital
color data in a matrix A of size n × m. Each entry of A is an integer
which encodes the color information at a specific pixel location.

The set V of all n×m matrices is a vector space under the usual rules for
matrix addition and scalar multiplication. Initially, V is just a storage
system for photos. However, the algebraic toolkit for V is a convenient
way to express operations on photos. We give one illustration: breaking
a photo into RGB (Red, Green, Blue) separation photos, in order to
make color separation transparencies.
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One way to encode each entry of A is to define aij = rij + gijx + bijx
2

where x is some convenient base. The integers rij , gij , bij represent the
amount of red, green and blue present in the pixel with data aij . Then
A = R +Gx+ Bx2 where R = [rij ], G = [gij ], B = [bij ] are n×m ma-
trices that represent the color separation photos. These monochromatic
photos are superimposed as color transparencies on a standard overhead
projector to duplicate the original photograph.

Printing machinery from many years ago employed separation negatives
and multiple printing runs in primary ink colors to make book photos.
The advent of digital printers and simpler inexpensive technologies has
made the separation process nearly obsolete. To help the reader un-
derstand the historical events, we record the following quote from Sam
Wang7:

I encountered many difficulties when I first began making gum prints:
it was not clear which paper to use; my exposing light (a sun lamp) was
highly inadequate; plus a myriad of other problems. I was also using
panchromatic film, making in–camera separations, holding RGB filters
in front of the camera lens for three exposures onto 3 separate pieces of
black and white film. I also made color separation negatives from color
transparencies by enlarging in the darkroom. Both of these methods
were not only tedious but often produced negatives very difficult to
print — densities and contrasts that were hard to control and working
in the dark with panchromatic film was definitely not fun. The fact
that I got a few halfway decent prints is something of a small miracle,
and represents hundreds of hours of frustrating work! Digital negatives
by comparison greatly simplify the process. Nowadays (2004) I use
color images from digital cameras as well as scans from slides, and the
negatives print much more predictably.

Function Spaces

The default storage system used for applications involving ordinary or
partial differential equations is a function space. The data item packages
for differential equations are their solutions, which are functions, or in
an applied context, a graphic defined on a certain graph window. They
are not column vectors of numbers.

Functions and Column Vectors

An alternative view, adopted by researchers in numerical solutions of
differential equations, is that a solution is a table of numbers, consisting
of pairs of x and y values.

7Sam Wang teaches photography and art with computer at Clemson University
in South Carolina. His photography degree is from the University of Iowa (1966).
Reference: A Gallery of Tri-Color Prints, by Sam Wang
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These researchers might view a function as being a fixed vector. Their
unique intuitive viewpoint is that a function is a graph and a graph is de-
termined by so many dots, which are practically obtained by sampling
the function y(x) at a reasonably dense set of x-values. The approxima-
tion is

y ≈


y(x1)
y(x2)

...
y(xn)


where x1, . . . , xn are the samples and y(x1), . . . , y(xn) are the sampled
values of function y.

The trouble with the approximation is that two different functions may
need different sampling rates to properly represent their graphic. The
result is that the two functions might need data storage systems of differ-
ent dimensions, e.g., f needs its sampled values in R200 and g needs its
sampled values in R400. The absence of a universal fixed vector storage
system for sampled functions explains the appeal of a storage system like
the set of all functions.

Infinitely Long Column Vectors. Novices suggest a way around the
lack of a universal numerical data storage system for sampled functions:
develop a theory of column vectors with infinitely many components. It
may help you to think of any function f as an infinitely long column
vector, with one entry f(x) for each possible sample x, e.g.,

~f =


...

f(x)
...

 level x

It is not clear how to order or address the entries of such a column
vector: at algebraic stages it hinders. Can computers store infinitely
long column vectors? The easiest path through the algebra is to deal
exactly with functions and function notation. Still, there is something
attractive about the change from sampled approximations to a single
column vector with infinite extent:

~f ≈


f(x1)
f(x2)

...
f(xn)

→


...
f(x)

...

 level x

The thinking behind the level x annotation is that x stands for one of
the infinite possibilities for an invented sample. Alternatively, with a
rich set of invented samples x1, . . . , xn, value f(x) equals approximately
f(xj), where x is closest to some sample xj .



5.4 Independence, Span and Basis 367

The Vector Space V of all Functions on a Set E

The rules for function addition and scalar multiplication come from col-
lege algebra and pre-calculus backgrounds:

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x).

These rules can be motivated and remembered by the level x notation
of infinitely long column vectors:

c1 ~f + c2~g = c1


...

f(x)
...

+ c2


...

g(x)
...

 =


...

c1f(x) + c2g(x)
...


The rules define addition and scalar multiplication of functions. The
closure law for a vector space holds. Routine, but tedious, justifications
show that V , under the above rules for addition and scalar multiplication,
has the required 8-property toolkit to make it a vector space:

Closure The operations f + g and kf are defined and result in a
new function which is also in the set V of all functions on
the set E.

Addition f + g = g + f commutative
f + (g + h) = (f + g) + h associative
The zero function 0 is defined and 0 + f = f zero
The function −f is defined and f + (−f) = 0 negative

Scalar
multiply

k(f + g) = kf + kg distributive I
(k1 + k2)f = k1f + k2f distributive II
k1(k2f) = (k1k2)f distributive III
1f = f identity

Important subspaces of the vector space V of all functions appear in ap-
plied literature as the storage systems for solutions to differential equa-
tions and solutions of related models.

The Space C(E)

Let E = {x : a < x < b} be an open interval on the real line. The
set C(E) is defined to be the subset S of the set V of all functions on E
obtained by restricting the function to be continuous. Because sums and
scalar multiples of continuous functions are continuous, then S = C(E)
is a subspace of V and a vector space in its own right. What has been
said for an open interval E holds also for an open bounded set E.
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The Space C1(E)

The set C1(E) is the subset of the vector space C(E) of all continu-
ous functions on E obtained by restricting the function to be continu-
ously differentiable. Because sums and scalar multiples of continuously
differentiable functions are continuously differentiable, then C1(E) is a
subspace of C(E) and a vector space in its own right.

The Space Ck(E)

The set Ck(E) is the subset of the vector space C(E) of all continuous
functions on E obtained by restricting the function to be k times con-
tinuously differentiable. Because sums and scalar multiples of k times
continuously differentiable functions are k times continuously differen-
tiable, then Ck(E) is a subspace of C(E) and a vector space in its own
right.

Solution Space of a Differential Equation

The differential equation y′′−y = 0 has general solution y = c1e
x+c2e

−x,
which means that the set S of all solutions of the differential equation
consists of all possible linear combinations of the two functions ex and
e−x. Briefly,

S = span
(
ex, e−x

)
.

The functions ex, e−x are in C2(E) for any interval E on the x-axis.
Therefore, S is a subspace of C2(E) and a vector space in its own right.

More generally, every homogeneous linear differential equation, of any
order, has a solution set S which is a vector space in its own right.

Other Vector Spaces

The number of different vector spaces used as data storage systems in
scientific literature is finite, but growing with new discoveries. There
is really no limit to the number of different settings possible, because
creative individuals are able to invent new settings.

Here is an example of how creation begets new vector spaces. Consider
the problem y′ = 2y + f(x) and the task of storing data for the plotting
of an initial value problem with initial condition y(x0) = y0. The data
set V suitable for plotting consists of column vectors

~v =

 x0
y0
f

 .
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A plot command takes such a data item, computes the solution

y(x) = y0e
2x + e2x

∫ x

0
e−2tf(t)dt

and then plots it in a window of fixed size with center at (x0, y0). The
column vectors are not numerical vectors in R3, but some hybrid of
vectors in R2 and the space of continuous functions C(E) where E is
the real line.

It is relatively easy to come up with definitions of vector addition and
scalar multiplication on V . The closure law holds and the eight vector
space properties can be routinely verified. Therefore, V is an abstract
vector space, unlike any found in this text. We reiterate:

An abstract vector space is a set V and two operations of
+ and · such that the closure law holds and the eight

algebraic vector space properties are satisfied.

The paycheck for having recognized a vector space setting in an applica-
tion is clarity of exposition and economy of effort in details. Algebraic
details in R2 can often be transferred unchanged to an abstract vector
space setting, line for line, to obtain the details in the more abstract
setting.

Independence and Dependence

The subject of independence applies to coordinate spaces Rn, function
spaces and in particular solution spaces of differential equations, dig-
ital photos, sequences of Fourier coefficients or Taylor coefficients, and
general abstract vector spaces. Introduced here are definitions for low di-
mensions, the geometrical meaning of independence and basic algebraic
tests for independence.

The motivation for the study of independence is the theory of general
solutions, which are expressions representing all possible solutions of a
linear problem. The subject of independence discovers the shortest pos-
sible expression for a general solution.

Definition 7 (Independence)
Vectors ~v1, . . . , ~vk are called independent provided each linear combi-
nation ~v = c1~v1 + · · ·+ ck~vk is represented by a unique set of constants
c1, . . . , ck.

Definition 8 (Dependence)
Vectors ~v1, . . . , ~vk are called dependent provided they are not indepen-
dent. This means that a linear combination ~v = a1~v1 + · · ·+ak~vk can be
represented in a second way as ~v = b1~v1 + · · · + bk~vk where for at least
one index j, aj 6= bj .


