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5.4 Independence, Span and Basis

The technical topics of independence, dependence and span apply to the
study of Euclidean spaces R2, R3, . . . , Rn and also to the continuous
function space C(E), the space of differentiable functions C1(E) and its
generalization Cn(E), and to general abstract vector spaces.

Basis and General Solution

The term basis has been introduced earlier for systems of linear algebraic
equations. To review, a basis is obtained from the vector general solution
~x of matrix equation A~x = ~0 by computing the partial derivatives ∂t1 ,
∂t2 , . . . of ~x, where t1, t2, . . . is the list of invented symbols assigned to
the free variables identified in rref(A).

The partial derivatives are special solutions to the homogeneous equa-
tion A~x = ~0. Knowing the special solutions is sufficient for writing out
the general solution. In summary:

A basis is an abbreviation or shortcut notation for the gen-
eral solution.

Deeper properties have been isolated for the list of special solutions ob-
tained from the partial derivatives ∂t1~x, ∂t2~x, . . . . The most important
properties are span and independence.

Independence, Span and Basis

A list of vectors ~v1, . . . , ~vk is said to span a vector space V (definition
on page 297), written

V = span(~v1, ~v2, . . . , ~vk),

provided V consists of exactly the set of all linear combinations

~v = c1~v1 + · · ·+ ck~vk.

The notion originates with the general solution ~v of a homogeneous ma-
trix system A~v = ~0, where the invented symbols t1, . . . , tk are the
constants c1, . . . , ck and the vector partial derivative list ∂t1~v, . . . , ∂tk~v
is the list of special solution vectors ~v1, . . . , ~vk.

Vectors ~v1, . . . , ~vk are said to be independent provided each linear
combination ~v = c1~v1 + · · · + ck~vk is represented by a unique set of
constants c1, . . . , ck. See pages 369 and 375 for independence tests.
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Definition 6 (Basis)
A basis of a vector space V is defined to be a list of independent vectors
~v1, . . . , ~vk which spans V . A basis is tested by two checkpoints:

1. The list of vectors ~v1, ~v2, . . . , ~vk is independent.

2. The vectors span V , written V = span(~v1, . . . , ~vk).

Bases are used to express the general solution of a linear problem. The
spanning condition means that every possible vector in V is a linear
combination of basis elements. The independence condition means
that linear combinations are uniquely represented, which, in practical
terms, means that the general solution expression has the fewest possible
terms.

The Vector Spaces Rn

The vector space Rn of n-element fixed column vectors (or row vec-
tors) is from the view of applications a storage system for organization
of numerical data sets that is equipped with an algebraic toolkit. The
organizational scheme induces a data structure onto the numerical data
set. In particular, whether needed or not, there are pre-defined opera-
tions of addition (+) and scalar multiplication (·) which apply to fixed
vectors. The two operations on fixed vectors satisfy the closure law and
in addition obey the eight algebraic vector space properties. We view the
vector space V = Rn as the data set consisting of data item packages.
The toolkit is the following set of eight algebraic properties.

Closure The operations ~X + ~Y and k ~X are defined and result in
a new vector which is also in the set V .

Addition ~X + ~Y = ~Y + ~X commutative
~X + (~Y + ~Z) = (~Y + ~X) + ~Z associative
Vector ~0 is defined and ~0 + ~X = ~X zero
Vector − ~X is defined and ~X + (− ~X) = ~0 negative

Scalar
multiply

k( ~X + ~Y ) = k ~X + k~Y distributive I
(k1 + k2) ~X = k1 ~X + k2 ~X distributive II
k1(k2 ~X) = (k1k2) ~X distributive III
1 ~X = ~X identity

The 8 Properties

.+

Toolkit

Operations

Set
Data

Figure 12. A Data Storage
System.
A vector space is a data set of data
item packages plus a storage system
which organizes the data. A toolkit is
provided consisting of operations +
and · plus 8 algebraic vector space
properties.
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Fixed Vectors and the Toolkit

Scalar multiplication of fixed vectors is commonly used for re-scaling,
especially to unit systems fps, cgs and mks. For instance, a numerical
data set of lengths recorded in meters (mks) is re-scaled to centimeters
(cgs) using scale factor k = 100.

Addition and subtraction of fixed vectors is used in a variety of cal-
culations, which includes averages, difference quotients and calculus op-
erations like integration.

Planar Plots and the Toolkit

The data set for a plot problem consists of the plot points in R2, which
are the dots for the connect-the-dots graphic. Assume the function y(x)
to be plotted comes from a differential equation like y′ = f(x, y), then
Euler’s numerical method could be used for the sequence of dots in the
graphic. In this case, the next dot is represented as ~v2 = ~v1 + ~E(~v1).
Symbol ~v1 is the previous dot and symbol ~E(~v1) is the Euler increment.
We define

~v1 =

(
x0
y0

)
, ~E(~v1) = h

(
1

f(x0, y0)

)
,

~v2 = ~v1 + ~E(~v1) =

(
x0 + h

y0 + hf(x0, y0)

)
.

A step size h = 0.05 is commonly used. The Euler increment ~E(~v1) is
given as scalar multiplication by h against an R2-vector which involves
evaluation of f at the previous dot ~v1.

In summary, the dots for the graphic of y(x) form a data set in the
vector space R2. The dots are obtained by algorithm rules, which are
easily expressed by vector addition (+) and scalar multiplication (·). The
8 properties of the toolkit were used in a limited way.

Digital Photographs

A digital photo consists of many pixels arranged in a two dimensional
array. Structure can be assigned to the photo by storing the pixel digital
color data in a matrix A of size n × m. Each entry of A is an integer
which encodes the color information at a specific pixel location.

The set V of all n×m matrices is a vector space under the usual rules for
matrix addition and scalar multiplication. Initially, V is just a storage
system for photos. However, the algebraic toolkit for V is a convenient
way to express operations on photos. We give one illustration: breaking
a photo into RGB (Red, Green, Blue) separation photos, in order to
make color separation transparencies.
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One way to encode each entry of A is to define aij = rij + gijx + bijx
2

where x is some convenient base. The integers rij , gij , bij represent the
amount of red, green and blue present in the pixel with data aij . Then
A = R +Gx+ Bx2 where R = [rij ], G = [gij ], B = [bij ] are n×m ma-
trices that represent the color separation photos. These monochromatic
photos are superimposed as color transparencies on a standard overhead
projector to duplicate the original photograph.

Printing machinery from many years ago employed separation negatives
and multiple printing runs in primary ink colors to make book photos.
The advent of digital printers and simpler inexpensive technologies has
made the separation process nearly obsolete. To help the reader un-
derstand the historical events, we record the following quote from Sam
Wang7:

I encountered many difficulties when I first began making gum prints:
it was not clear which paper to use; my exposing light (a sun lamp) was
highly inadequate; plus a myriad of other problems. I was also using
panchromatic film, making in–camera separations, holding RGB filters
in front of the camera lens for three exposures onto 3 separate pieces of
black and white film. I also made color separation negatives from color
transparencies by enlarging in the darkroom. Both of these methods
were not only tedious but often produced negatives very difficult to
print — densities and contrasts that were hard to control and working
in the dark with panchromatic film was definitely not fun. The fact
that I got a few halfway decent prints is something of a small miracle,
and represents hundreds of hours of frustrating work! Digital negatives
by comparison greatly simplify the process. Nowadays (2004) I use
color images from digital cameras as well as scans from slides, and the
negatives print much more predictably.

Function Spaces

The default storage system used for applications involving ordinary or
partial differential equations is a function space. The data item packages
for differential equations are their solutions, which are functions, or in
an applied context, a graphic defined on a certain graph window. They
are not column vectors of numbers.

Functions and Column Vectors

An alternative view, adopted by researchers in numerical solutions of
differential equations, is that a solution is a table of numbers, consisting
of pairs of x and y values.

7Sam Wang teaches photography and art with computer at Clemson University
in South Carolina. His photography degree is from the University of Iowa (1966).
Reference: A Gallery of Tri-Color Prints, by Sam Wang
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These researchers might view a function as being a fixed vector. Their
unique intuitive viewpoint is that a function is a graph and a graph is de-
termined by so many dots, which are practically obtained by sampling
the function y(x) at a reasonably dense set of x-values. The approxima-
tion is

y ≈


y(x1)
y(x2)

...
y(xn)


where x1, . . . , xn are the samples and y(x1), . . . , y(xn) are the sampled
values of function y.

The trouble with the approximation is that two different functions may
need different sampling rates to properly represent their graphic. The
result is that the two functions might need data storage systems of differ-
ent dimensions, e.g., f needs its sampled values in R200 and g needs its
sampled values in R400. The absence of a universal fixed vector storage
system for sampled functions explains the appeal of a storage system like
the set of all functions.

Infinitely Long Column Vectors. Novices suggest a way around the
lack of a universal numerical data storage system for sampled functions:
develop a theory of column vectors with infinitely many components. It
may help you to think of any function f as an infinitely long column
vector, with one entry f(x) for each possible sample x, e.g.,

~f =


...

f(x)
...

 level x

It is not clear how to order or address the entries of such a column
vector: at algebraic stages it hinders. Can computers store infinitely
long column vectors? The easiest path through the algebra is to deal
exactly with functions and function notation. Still, there is something
attractive about the change from sampled approximations to a single
column vector with infinite extent:

~f ≈


f(x1)
f(x2)

...
f(xn)

→


...
f(x)

...

 level x

The thinking behind the level x annotation is that x stands for one of
the infinite possibilities for an invented sample. Alternatively, with a
rich set of invented samples x1, . . . , xn, value f(x) equals approximately
f(xj), where x is closest to some sample xj .
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The Vector Space V of all Functions on a Set E

The rules for function addition and scalar multiplication come from col-
lege algebra and pre-calculus backgrounds:

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x).

These rules can be motivated and remembered by the level x notation
of infinitely long column vectors:

c1 ~f + c2~g = c1


...

f(x)
...

+ c2


...

g(x)
...

 =


...

c1f(x) + c2g(x)
...


The rules define addition and scalar multiplication of functions. The
closure law for a vector space holds. Routine, but tedious, justifications
show that V , under the above rules for addition and scalar multiplication,
has the required 8-property toolkit to make it a vector space:

Closure The operations f + g and kf are defined and result in a
new function which is also in the set V of all functions on
the set E.

Addition f + g = g + f commutative
f + (g + h) = (f + g) + h associative
The zero function 0 is defined and 0 + f = f zero
The function −f is defined and f + (−f) = 0 negative

Scalar
multiply

k(f + g) = kf + kg distributive I
(k1 + k2)f = k1f + k2f distributive II
k1(k2f) = (k1k2)f distributive III
1f = f identity

Important subspaces of the vector space V of all functions appear in ap-
plied literature as the storage systems for solutions to differential equa-
tions and solutions of related models.

The Space C(E)

Let E = {x : a < x < b} be an open interval on the real line. The
set C(E) is defined to be the subset S of the set V of all functions on E
obtained by restricting the function to be continuous. Because sums and
scalar multiples of continuous functions are continuous, then S = C(E)
is a subspace of V and a vector space in its own right. What has been
said for an open interval E holds also for an open bounded set E.
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The Space C1(E)

The set C1(E) is the subset of the vector space C(E) of all continu-
ous functions on E obtained by restricting the function to be continu-
ously differentiable. Because sums and scalar multiples of continuously
differentiable functions are continuously differentiable, then C1(E) is a
subspace of C(E) and a vector space in its own right.

The Space Ck(E)

The set Ck(E) is the subset of the vector space C(E) of all continuous
functions on E obtained by restricting the function to be k times con-
tinuously differentiable. Because sums and scalar multiples of k times
continuously differentiable functions are k times continuously differen-
tiable, then Ck(E) is a subspace of C(E) and a vector space in its own
right.

Solution Space of a Differential Equation

The differential equation y′′−y = 0 has general solution y = c1e
x+c2e

−x,
which means that the set S of all solutions of the differential equation
consists of all possible linear combinations of the two functions ex and
e−x. Briefly,

S = span
(
ex, e−x

)
.

The functions ex, e−x are in C2(E) for any interval E on the x-axis.
Therefore, S is a subspace of C2(E) and a vector space in its own right.

More generally, every homogeneous linear differential equation, of any
order, has a solution set S which is a vector space in its own right.

Other Vector Spaces

The number of different vector spaces used as data storage systems in
scientific literature is finite, but growing with new discoveries. There
is really no limit to the number of different settings possible, because
creative individuals are able to invent new settings.

Here is an example of how creation begets new vector spaces. Consider
the problem y′ = 2y + f(x) and the task of storing data for the plotting
of an initial value problem with initial condition y(x0) = y0. The data
set V suitable for plotting consists of column vectors

~v =

 x0
y0
f

 .
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A plot command takes such a data item, computes the solution

y(x) = y0e
2x + e2x

∫ x

0
e−2tf(t)dt

and then plots it in a window of fixed size with center at (x0, y0). The
column vectors are not numerical vectors in R3, but some hybrid of
vectors in R2 and the space of continuous functions C(E) where E is
the real line.

It is relatively easy to come up with definitions of vector addition and
scalar multiplication on V . The closure law holds and the eight vector
space properties can be routinely verified. Therefore, V is an abstract
vector space, unlike any found in this text. We reiterate:

An abstract vector space is a set V and two operations of
+ and · such that the closure law holds and the eight

algebraic vector space properties are satisfied.

The paycheck for having recognized a vector space setting in an applica-
tion is clarity of exposition and economy of effort in details. Algebraic
details in R2 can often be transferred unchanged to an abstract vector
space setting, line for line, to obtain the details in the more abstract
setting.

Independence and Dependence

The subject of independence applies to coordinate spaces Rn, function
spaces and in particular solution spaces of differential equations, dig-
ital photos, sequences of Fourier coefficients or Taylor coefficients, and
general abstract vector spaces. Introduced here are definitions for low di-
mensions, the geometrical meaning of independence and basic algebraic
tests for independence.

The motivation for the study of independence is the theory of general
solutions, which are expressions representing all possible solutions of a
linear problem. The subject of independence discovers the shortest pos-
sible expression for a general solution.

Definition 7 (Independence)
Vectors ~v1, . . . , ~vk are called independent provided each linear combi-
nation ~v = c1~v1 + · · ·+ ck~vk is represented by a unique set of constants
c1, . . . , ck.

Definition 8 (Dependence)
Vectors ~v1, . . . , ~vk are called dependent provided they are not indepen-
dent. This means that a linear combination ~v = a1~v1 + · · ·+ak~vk can be
represented in a second way as ~v = b1~v1 + · · · + bk~vk where for at least
one index j, aj 6= bj .
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Independence means unique representation of linear combina-
tions of ~v1, . . . , ~vk, which is exactly the statement

a1~v1 + · · ·+ ak~vk = b1~v1 + · · ·+ bk~vk

implies the coefficients match:
a1 = b1
a2 = b2

...
ak = bk

Independence details normally use a briefer, more abstract equivalence,
as in the theorem below. See Definition 9. The proof is delayed until
page 386.

Theorem 21 ((Unique Representation of the Zero Vector))
Vectors ~v1, . . . , ~vk are independent in vector space V if and only if the
system of equations

c1~v1 + · · ·+ ck~vk = ~0

has unique solution c1 = · · · = ck = 0.

Independence of 1, x2, x4 is decided by the following result, because it is
known that powers 1, x, . . . , x4 form an independent set. The proof is
delayed until page 386.

Theorem 22 (Subsets of Independent Sets)
Any nonvoid subset of an independent set is also independent.

Subsets of dependent sets can be either independent or dependent.

Independence Test

To prove that vectors ~v1, . . . , ~vk are independent, form the system of
equations

c1~v1 + · · ·+ ck~vk = ~0.

Solve for the constants c1, . . . , ck.

Independence means all the constants c1, . . . , ck are zero.

Dependence means that a nonzero solution c1, . . . , ck exists.
This means cj 6= 0 for at least one index j.
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Geometric Independence and Dependence for Two Vectors

Two vectors ~v1, ~v2 in R2 are said to be independent provided neither is
the zero vector and one is not a scalar multiple of the other. Graphically,
this means ~v1 and ~v2 form the edges of a non-degenerate parallelogram.

~v 2

~v 1

Figure 13. Independent vectors.
Two nonzero nonparallel vectors ~v1, ~v2 form
the edges of a parallelogram P . A vector
~v = c1~v1 + c2~v2 lies interior to P if the scaling
constants satisfy 0 < c1 < 1, 0 < c2 < 1.

Algebraic Independence for Two Fixed Vectors

Given two vectors ~v1, ~v2, construct the system of equations in unknowns
c1, c2

c1~v1 + c2~v2 = ~0.

Solve the system for c1, c2. The two vectors are independent if and
only if the system has the unique solution c1 = c2 = 0.

The test is equivalent to the statement that ~v = c1~v1 + c2~v2 holds for
one unique set of constants x1, x2. The details: if ~v = a1~v1 + a2~v2
and also ~v = b1~v1 + b2~v2, then subtraction of the two equations gives
(a1 − b1)~v1 + (a2 − b2)~v2 = ~0. This is a relation c1~v1 + c2~v2 = ~0 with
c1 = a1 − b1, c2 = a2 − b2. Independence means c1 = c2 = 0, or
equivalently, a1 = b1, a2 = b2. The details are complete.

~b

~a

~a + ~b

Figure 14. The parallelogram rule.
Two nonzero vectors ~a, ~b are added by the
parallelogram rule: vector ~a+~b has tail
matching the joined tails of ~a, ~b and head at
the corner of the completed parallelogram.

Why does the test work? Vector ~v = c1~v1 + c2~v2 is formed by the
parallelogram rule, Figure 14, by adding the scaled vectors ~a = c1~v1,
~b = c2~v2. The zero vector ~v = ~0 can be obtained from nonzero nonparallel
vectors ~v1, ~v2 only if the scaling factors c1, c2 are both zero.

Geometric Dependence of Two Fixed Vectors

Define vectors ~v1, ~v2 in R2 to be dependent provided they are not
independent. This means one of ~v1, ~v2 is the zero vector or else ~v1 and
~v2 lie along the same line: the two vectors cannot form a parallelogram.
Algebraic detection of dependence is by failure of the independence test:
after solving the system c1~v1 + c2~v2 = ~0, one of the two constants c1, c2
is nonzero.
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Fixed Vector Illustration

Two column vectors are tested for independence by forming the system
of equations c1~v1 + c2~v2 = ~0, e.g,

c1

(
−1

1

)
+ c2

(
2
1

)
=

(
0
0

)
.

This vector equation can be written as a homogeneous system A~c = ~0,
defined by

A =

(
−1 2

1 1

)
, ~c =

(
c1
c2

)
.

The system A~c = ~0 can be solved for ~c by rref methods. Because
rref(A) = I, then c1 = c2 = 0, which verifies independence of the two
vectors.

If A is square and rref(A) = I, then A−1 exists. The equation A~c = ~0
can be solved by multiplication of both sides by A−1. Then the unique
solution is ~c = ~0, which means c1 = c2 = 0. Inverse theory says
A−1 = adj(A)/ det(A) exists precisely when det(A) 6= 0, therefore in-
dependence is verified independently of rref methods by the 2 × 2 de-
terminant computation det(A) = −3 6= 0.

Remarks about det(A) apply to independence testing for any two vectors,
but only in case the system of equations A~c = ~0 is square. For instance,
in R3, the homogeneous system

c1

 −1
1
0

+ c2

 2
1
0

 =

 0
0
0


has vector-matrix form A~c = ~0 with 3×2 matrix A. There is no chance
to use determinants directly. Left undiscussed are clever determinant
methods for m × n systems, because we rely on rref methods for such
systems.

Geometric Independence and Dependence for Three Vec-
tors

Three vectors in R3 are said to be independent provided none of them
are the zero vector and they form the edges of a non-degenerate par-
allelepiped of positive volume. Such vectors are called a triad. In the
special case of all pairs orthogonal (the vectors are 90◦ apart) they are
called an orthogonal triad.
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~v 2

~v 1

~v 3 Figure 15. Independence of three vectors.
Vectors ~v1, ~v2, ~v3 form the edges of a parallelepiped.
A vector ~v = c1~v1 + c2~v2 + c3~v3 is located interior to
the parallelepiped, provided satisfying
0 < c1, c2, c3 < 1.

Algebraic Independence Test for Three Vectors

Given vectors ~v1, ~v2, ~v3, construct the vector equation in unknowns c1,
c2, c3

c1~v1 + c2~v2 + c3~v3 = ~0.

Solve the system for c1, c2, c3. The vectors are independent if and only
if the system has unique solution c1 = c2 = c3 = 0.

Why does the test work? The vector ~v = c1~v1 + c2~v2 + c3~v3 is formed
by two applications of the parallelogram rule: first add the scaled vectors
c1~v1, c2~v2 and secondly add the scaled vector c3~v3 to the resultant. The
zero vector ~v = ~0 can be obtained from a vector triad ~v1, ~v2, ~v3 only if
the scaling factors c1, c2, c3 are all zero.

Geometric Dependence of Three Vectors

Given vectors ~v1, ~v2, ~v3, they are dependent if and only if they are not
independent. The three subcases that occur can be analyzed geomet-
rically by the theorem proved earlier:

A nonvoid subset of an independent set is independent.

The three cases:

1. There is a dependent subset of one vector. Then one of them is
the zero vector.

2. There is a dependent subset of two vectors. Then two of them lie
along the same line.

2. There is a dependent subset of three vectors. Then one of them is
in the plane of the other two.

In summary, three dependent vectors in R3 cannot be the edges of a
parallelepiped. Algebraic detection of dependence is by failure of the
independence test: after solving the system c1~v1 + c2~v2 + c3~v3 = ~0, one
of the three constants c1, c2, c3 is nonzero8.

8In practical terms, there is at least one free variable, or equivalently, appearing
in the solution formula is at least one invented symbol t1, t2, . . . .
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Independence in an Abstract Vector Space

Linear algebra literature might assume a different basic definition of
independence, which is purely algebraic:

Definition 9 (Independence in an Abstract Vector Space)
Let ~v1, . . . , ~vk be a finite set of vectors in an abstract vector space V .
The set is called independent if and only if the system of equations in
unknowns c1, . . . , ck

c1~v1 + · · ·+ ck~vk = ~0

has unique solution c1 = · · · = ck = 0.

The set of vectors is called dependent if and only if it is not indepen-
dent. This means that the system of equations in variables c1, . . . , ck
has a solution with at least one variable cj nonzero.

Independence defined in this abstract manner means that each linear
combination ~v = c1~v1 + · · ·+ ck~vk is represented by a unique set of con-
stants c1, . . . , ck, as in Definition 7. See Theorem 23 and its consequences
in Theorem 24 and Theorem 25. Proofs are in the exercises, page 389.

It is not obvious how to solve for c1, . . . , ck in the algebraic indepen-
dence test, when the vectors ~v1, . . . , ~vk are not fixed vectors. If V is a
set of functions, then the methods from linear algebraic equations do not
directly apply. This algebraic problem causes us to develop special tools
just for functions, called the sampling test and Wronskian test. Ex-
amples appear later, which illustrate how to apply these two important
independence tests for functions.

Theorem 23 (Unique Representation)
Let ~v1, . . . , ~vk be independent vectors in an abstract vector space V . If
scalars a1, . . . , ak and b1, . . . , bk satisfy the relation

a1~v1 + · · ·+ ak~vk = b1~v1 + · · ·+ bk~vk

then the coefficients must match:
a1 = b1,
a2 = b2,
...
ak = bk.

Theorem 24 (Independence of Two Vectors)
Two vectors in an abstract vector space V are independent if and only if
neither is the zero vector and each is not a constant multiple of the other.

Theorem 25 (Zero Vector)
An independent set in an abstract vector space V cannot contain the zero
vector. Moreover, an independent set cannot contain a vector which is a
linear combination of the others.
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Independence and Dependence Tests for Fixed
Vectors

Recorded here are a number of useful algebraic tests to determine inde-
pendence or dependence of a finite list of fixed vectors.

Rank Test

In the vector space Rn, the key to detection of independence is zero
free variables, or nullity zero, or equivalently, maximal rank. The test
is justified from the formula nullity(A) + rank(A) = k, where k is the
column dimension of A.

Theorem 26 (Rank-Nullity Test for Three Vectors)
Let ~v1, ~v2, ~v3 be 3 column vectors in Rn and let their n × 3 augmented
matrix be

A = aug(~v1, ~v2, ~v3).

The vectors ~v1, ~v2, ~v3 are independent if rank(A) = 3 and dependent
if rank(A) < 3. The conditions are equivalent to nullity(A) = 0 and
nullity(A) > 0, respectively.

Theorem 27 (Rank-Nullity Test)
Let ~v1, . . . , ~vk be k column vectors in Rn and let A be their n × k aug-
mented matrix. The vectors are independent if rank(A) = k and depen-
dent if rank(A) < k. The conditions are equivalent to nullity(A) = 0 and
nullity(A) > 0, respectively.

The proofs are delayed until page 387.

Determinant Test

In the unusual case when the system arising in the independence test
can be expressed as A~c = ~0 and A is square, then det(A) = 0 detects de-
pendence, and det(A) 6= 0 detects independence. The reasoning is based
upon the formula A−1 = adj(A)/det(A), valid exactly when det(A) 6= 0.

Theorem 28 (Determinant Test)
Let ~v1, . . . , ~vn be n column vectors in Rn and let A be the n×n augmented
matrix of these vectors. The vectors are independent if det(A) 6= 0 and
dependent if det(A) = 0.

The proof is delayed until page 387.
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Orthogonal Vector Test

In some applications the vectors being tested are known to satisfy or-
thogonality conditions. For three vectors, these conditions are written

~v1 · ~v1 > 0, ~v2 · ~v2 > 0, ~v3 · ~v3 > 0,
~v1 · ~v2 = 0, ~v2 · ~v3 = 0, ~v3 · ~v1 = 0.

(1)

The equations mean that the vectors are nonzero and pairwise 90◦ apart.
The set of vectors is said to be pairwise orthogonal, or briefly, orthog-
onal. For a list of k vectors, the orthogonality conditions are written

~vi · ~vi > 0, ~vi · ~vj = 0, 1 ≤ i, j ≤ k, i 6= j.(2)

Theorem 29 (Orthogonal Vector Test)
A set of nonzero pairwise orthogonal vectors ~v1, . . . , ~vk is linearly indepen-
dent.

The proof is delayed until page 387.

Independence Tests for Functions

Recorded here are a number of useful algebraic tests to determine inde-
pendence of a finite list of functions. Neither test is an equivalence. A
test applies to determine independence, but dependence is left undeter-
mined. No results here imply that a list of functions is dependent.

Sampling Test for Functions

Let f1, f2, f3 be three functions defined on a domain D. Let V be the
vector space of all functions ~f on D with the usual scalar multiplication
and addition rules learned in college algebra.9 Addressed here is the
question of how to test independence and dependence of ~f1, ~f2, ~f3 in V .
The vector relation

c1 ~f1 + c2 ~f2 + c3 ~f3 = ~0

means
c1f1(x) + c2f2(x) + c3f3(x) = 0, x in D.

An idea how to solve for c1, c2, c3 arises by sampling, which means 3
relations are obtained by inventing 3 values for x, say x1, x2, x3. The
equations arising are

c1f1(x1) + c2f2(x1) + c3f3(x1) = 0,
c1f1(x2) + c2f2(x2) + c3f3(x2) = 0,
c1f1(x3) + c2f2(x3) + c3f3(x3) = 0.

9Symbol ~f is the vector package for function f . Symbol f(x) is a number, a function
value. Symbol f is a graph, equivalently the domain D plus equation y = f(x).
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This system of 3 equations in 3 unknowns can be written in matrix form
A~c = ~0, where the coefficient matrix A and vector ~c of unknowns c1, c2,
c3 are defined by

A =

 f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
f1(x3) f2(x3) f3(x3)

 , ~c =

 c1
c2
c3

 .
The matrix A is called the sampling matrix for f1, f2, f3 with samples
x1, x2, x3.

The system A~c = ~0 has unique solution ~c = ~0, proving ~f1, ~f2, ~f3 inde-
pendent, provided det(A) 6= 0.

All of what has been said here for three functions applies to k func-
tions f1, . . . , fk, in which case k samples x1, . . . , xk are invented. The
sampling matrix A and vector ~c of variables are then

A =


f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
... · · ·

...
f1(xk) f2(xk) · · · fk(xk)

 , ~c =


c1
c2
...
ck

 .

Theorem 30 (Sampling Test for Functions)
The functions f1, . . . , fk are linearly independent on an x-set D provided
there is a sampling matrix A constructed from invented samples x1, . . . , xk
in D such that det(A) 6= 0.

It is false that independence of the functions implies det(A) 6= 0. The
relation det(A) 6= 0 depends on the invented samples.

Wronskian Test for Functions

The test will be explained first for two functions f1, f2. Independence
of f1, f2, as in the sampling test, is decided by solving for constants c1,
c2 in the equation

c1f1(x) + c2f2(x) = 0, for all x.

J. M. Wronski suggested to solve for the constants by differentiation of
this equation, obtaining a pair of equations

c1f1(x) + c2f2(x) = 0,
c1f
′
1(x) + c2f

′
2(x) = 0, for all x.

This is a system of equations A~c = ~0 with coefficient matrix A and
variable list vector ~c given by

A =

(
f1(x) f2(x)
f ′1(x) f ′2(x)

)
, ~c =

(
c1
c2

)
.
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The Wronskian Test is simply det(A) 6= 0 implies ~c = ~0, similar to the
sampling test:∣∣∣∣∣ f1(x) f2(x)

f ′1(x) f ′2(x)

∣∣∣∣∣ 6= 0 for some x implies f1, f2 independent.

Interesting about Wronski’s idea is that it requires the invention of just
one sample x such that the determinant is non-vanishing, in order to
establish independence of the two functions.

Wronskian Test for n Functions. Given functions f1, . . . , fn each
differentiable n − 1 times on an interval a < x < b, the Wronskian
determinant 10 is defined by the relation

W (f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
... · · ·

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
.

Theorem 31 (Wronskian Test)
Let functions f1, . . . , fn be differentiable n−1 times on interval a < x < b.
Then W (f1, . . . , fn)(x0) 6= 0 for some x0 in (a, b) implies f1, . . . , fn are
independent functions in the vector space V of all functions on (a, b).

The proof parallels the one for the sampling test, delayed to page 388.

Euler Solution Atom Test

The test originates in linear differential equations. It applies in a variety
of situations outside that scope, providing basic intuition about indepen-
dence of functions. It can be proved from the Wronskian test, but we
don’t try to do that. See Example 20, page 384.

Definition 10 (Euler Solution Atom)
A base atom is one of 1, cos(bx), sin(bx) or eax, eax cos(bx), eax sin(bx),
where b > 0 and a 6= 0. An Euler solution atom is a power xn times
a base atom, n a non-negative integer (0,1,2,. . . ).

Theorem 32 (Independence of Euler Solution Atoms)
A finite list of distinct Euler solution atoms is independent.

10Named after mathematician J. M. Wronski (1776-1853). Born Józef Maria Hoëné
in Poland, he resided his final 40 years in France using the name Wronski.
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Application: Vandermonde Determinant

Choosing the functions in the sampling test to be 1, x, x2 with invented
samples x1, x2, x3 gives the sampling matrix

V (x1, x2, x3) =

 1 x1 x21
1 x2 x22
1 x3 x23

 .
The sampling matrix is called a Vandermonde matrix. Using the
polynomial basis f1(x) = 1, f2(x) = x, . . . , fk(x) = xk−1 and invented
samples x1, . . . , xk gives the k × k Vandermonde matrix

V (x1, . . . , xk) =


1 x1 · · · xk−11

1 x2 · · · xk−12
...

... · · ·
...

1 xk · · · xk−1k

 .
The most often used Vandermonde determinant identities are∣∣∣∣∣ 1 a

1 b

∣∣∣∣∣ = b− a,∣∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣∣ = (c− b)(c− a)(b− a),

∣∣∣∣∣∣∣∣∣
1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

∣∣∣∣∣∣∣∣∣ = (d− c)(d− b)(d− a)(c− b)(c− a)(b− a).

Theorem 33 (Vandermonde Determinant Identity)
The Vandermonde matrix has a nonzero determinant for distinct samples,
because of the identity

det(V (x1, . . . , xk)) = Π
i<j

(xj − xi).

The technically demanding mathematical induction proof is delayed until
page 388.

Examples

14 Example (Vector General Solution) Find the vector general solution ~u
of A~u = ~0 , given matrix

A =

 1 2 0
2 5 0
0 0 0

 .
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Solution: The solution divides into two distinct sections: 1 and 2 .

1 : Find the scalar general solution of the system A~x = ~0.

The toolkit: combination, swap and multiply. Then we use the last frame algo-
rithm. The usual shortcut applies to compute rref(A). We skip the augmented
matrix aug(A,~0), knowing that the last column of zeros is unchanged by the
toolkit. The details:1 2 0

2 5 0
0 0 0

 First frame.

1 2 0
0 1 0
0 0 0

 combo(1,2,-2).

1 0 0
0 1 0
0 0 0

 combo(2,1,-2). Last frame, this is rref(A).

∣∣∣∣∣∣
x1 = 0,
x2 = 0,
0 = 0.

∣∣∣∣∣∣ Translate to scalar equations.

∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x3 = t1.

∣∣∣∣∣∣ Scalar general solution, obtained from the last frame algo-
rithm: x1, x2=lead, x3=free.

2 : Find the vector general solution of the system A~x = ~0.

The plan is to use the answer from 1 and partial differentiation to display the
vector general solution ~x.∣∣∣∣∣∣

x1 = 0,
x2 = 0,
x3 = t1.

∣∣∣∣∣∣ Scalar general solution, from 1 .

∂t1~x =

0
0
1

 The special solution is the partial on symbol t1. Only one,
because there is only one invented symbol.

~x = t1

0
0
1

 The vector general solution. It is the sum of terms, an
invented symbol times the corresponding special solution
(partial on that symbol). See Example 17 for more details.

15 Example (Independence) Assume ~v1, ~v2 are independent vectors in ab-
stract vector space V . Display the details which verify the independence of
the vectors ~v1 + 3~v2, ~v1 − 2~v2.

Solution: The independence test of Theorem 21 will be applied. We must
somehow solve for c1, c2 in the equation

c1 (~v1 + 3~v2) + c2 (~v1 − 2~v2) = ~0.
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The plan is to re-write this equation in terms of ~v1, ~v2, then use independence of
vectors ~v1, ~v2 to obtain scalar equations for c1, c2. The equation re-arrangement:

(c1 + c2)~v1 + (3c1 − 2c2)~v2 = ~0.

Independence according to Theorem 21 means that any relation a~v1 + b~v2 = ~0
implies scalar equations a = 0, b = 0. The re-arranged equation has a = c1+c2,
b = 3c1 − 2c2. Therefore, independence strips away the vectors from the re-
arranged equation, leaving a system of scalar equations in symbols c1, c2:

c1 + c2 = 0, The equation a = 0,
3c1 − 2c2 = = 0, The equation b = 0.

These equations have only the zero solution c1 = c2 = 0, because the coefficient

matrix

(
1 1
3 −2

)
is invertible (determinant nonzero). This completes the proof

that vectors ~v1 + 3~v2, ~v1 − 2~v2 are independent.

16 Example (Span) Let ~v1, ~v2 be two vectors in an abstract vector space V .
Define two subspaces

S1 = span(~v1, ~v2), S2 = span(~v1 + 3~v2, ~v1 − 2~v2).

(a) Display the technical details which show that the two subspaces are
equal: S1 = S2.

(b) Use the result of (a) to prove that independence of ~v1, ~v2 implies inde-
pendence of ~v1 + 3~v2, ~v1 − 2~v2.

Solution:

Details for (a). Sets S1, S2 are known to be subspaces of V . To show S1 = S2,
we will show each set is a subset of the other, that is, S2 ⊂ S1 and S1 ⊂ S2.

Show S2 ⊂ S1. By definition of span, both vectors ~v1 + 3~v2, ~v1 − 2~v2 belong
to the set S1. Therefore, the span of these two vectors is also in subspace S1,
hence S2 ⊂ S1.

Show S1 ⊂ S2. We will write ~v1 as a linear combination of ~v1 + 3~v2, ~v1− 2~v2 in
two steps. Then ~v1 belongs to S2.

Step 1.Eliminate ~v2 with a combination.

5~v1 = 2(~v1 + 3~v2) + 3(~v1 − 2~v2).

Step 2. Divide by 5.

~v1 =
2

5
(~v1 + 3~v2) +

3

5
(~v1 − 2~v2).

Similarly, ~v2 belongs to S2. Therefore, the span of ~v1, ~v2 belongs to S2, or
S1 ⊂ S2, as claimed.

Details for (b). Independence of ~v1, ~v2 implies dim(S1) = 2. Therefore,
dim(S2) = 2. If ~v1 + 3~v2, ~v1 − 2~v2 fail to be independent, then dependency
implies dim(S2) ≤ 1. We conclude from dim(S2) = 2 that ~v1 + 3~v2, ~v1− 2~v2 are
independent.
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17 Example (Independence, Span and Basis)
A 5× 5 linear system A~x = ~0 has scalar general solution

x1 = t1 + 2t2,
x2 = t1,
x3 = t2,
x4 = 4t2 + t3,
x5 = t3.

Find a basis for the solution space.

Solution: The answer is the set of special solutions obtained by taking
partial derivatives on the symbols t1, t2, t3. Differentiation details are below.

~X1 =


1
1
0
0
0

 , ~X2 =


2
0
1
4
0

 , ~X3 =


0
0
0
1
1

 .

Span. The vector general solution is expressed as the sum ~x = t1 ~X1 + t2 ~X2 +
t3 ~X3, which implies that the solution space is span( ~X1, ~X2, ~X3).

Independence We repeat the details for independence of the three special
solutions ~X1, ~X2, ~X3, a fact proved earlier in the text. The independence test
in Theorem 21 is applied, which dictates solving for c1, c2, c3 in the equation
c1 ~X1 + c2 ~X2 + c3 ~X3 = ~0. The vector general solution with t1 = c1, t2 = c2, t3 =
c3 says that ~x = ~0, which in scalar form means x1 = x2 = x3 = x4 = x5 = 0.
The scalar general solution, specialized to the free variable equations

x2 = t1,
x3 = t2,
x5 = t3,

implies that t1 = t2 = t3 = 0 (substitute x2 = x3 = x5 = 0). Then t1 = t2 =

t3 = 0 implies c1 = c2 = c3 = 0, proving independence of ~X1, ~X2, ~X3. A similar
argument proves the general result:

Lemma 1 The Special Solutions for a linear homogeneous system A~x = ~0 are
linearly independent.

Special Solution Details. The plan is to take the partial derivative of the
scalar general solution on symbol t1. This creates special solution ~X1. The
others are found the same way, by partials on t2, t3. For symbol t1:

∂t1~x =


∂t1x1
∂t1x2
∂t1x3
∂t1x4
∂t1x5

 =


∂t1(t1 + 2t2)

∂t1(t1)
∂t1(t2)

∂t1(4t2 + t3)
∂t1(t3)

 =


1
1
0
0
0

 .
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18 Example (Rank Test and Determinant Test) Apply both the rank test
and the determinant test to decide independence or dependence of the vec-
tors

~v1 =


1
1
0
0

 , ~v2 =


1
1
0
1

 , ~v3 =


0
0
0
1

 , ~v4 =


1
1
0
2

 .
Solution: Answer: The vectors are dependent.

Details for the Rank Test. The plan is to form the augmented matrix A
of the four vectors and then compute its rank. If the rank is 4, then they are
independent, otherwise they are dependent, by the rank test.

A = aug(~v1, ~v2, ~v3, ~v4)

=


1 1 0 1
1 1 0 1
0 0 0 0
0 1 1 2

 .

How to determine that the rank is not 4? We use the fact that the rank of
A equals the rank of AT . Equivalently, the row rank equals the column rank.
Then a row of zeros implies a dependent set of rows, which implies the row rank
is 3 or less (the rank is not 3). Also, columns one and two of A are identical,
impossible for independent columns, therefore the column rank is not 4.

Details for the Determinant Test. The test uses the matrix A defined
above. The question of independence reduces to testing |A| nonzero. If nonzero,
then the columns of A are independent, which implies the four given vectors are
independent. Otherwise, |A| = 0 which implies the columns of A are dependent,
in turn the given four vectors are dependent.

All of this depends upon A being square: there is no determinant theory for
non-square matrices.

Compute |A| = 0, because A has a row of zeros. Also, |A| = 0 because A has
duplicate columns. Therefore, the columns of A are dependent, which translates
to the given four vectors being dependent.

19 Example (Sampling Test and Wronskian Test) Let V = C(−∞,∞) and
define vectors ~v1 = x2, ~v2 = x7/3, ~v3 = x5.11 Apply the sampling test and
the Wronskian test to establish independence of the three vectors in V .

Solution: We mention that the vectors are not Euler solution atoms, therefore
there is no shortcut to decide on independence. However, intuition obtained
from the Euler solution atom test suggests that the three vectors are indepen-
dent.

Also important to note is that the vectors are not fixed vectors (column vectors),
therefore the rank test and determinant test cannot apply.

11To write ~v1 = x2 defines vector package ~v1 in V with domain (−∞,∞) and
equation y = x2.
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Sampling Test Details. A bad sample choice is x = 0, because it will produce
a row of zeros, hence a zero determinant, leading to no test. We choose samples
x = 1, 2, 3 for lack of insight, and then see if it works. The sample matrix is
obtained by replacing x = 1, 2, 3 respectively into the row vector

(
x2, x7/3, x5

)
:

A =

 1 1 1

4 ( 3
√

2)7 32

9 ( 3
√

3)7 243

 .

Because |A| ≈ 132 is nonzero, then the given vectors are independent by the
sampling test.

Wronskian Test Details. We’ll choose the sample x after finding the Wron-
skian matrix W (x) for all x. Start with row vector

(
x2, x7/3, x5

)
and differ-

entiate twice to compute the rows of the Wronskian matrix:

W (x) =

 x2 x7/3 x5

2x 7
3x

4/3 5x4

2 28
9 x

1/3 20x3

 .

The sample x = 0 won’t work, because |W (0)| has a row of zeros. We choose
x = 1, then

W (1) =

 1 1 1
2 7

3 5
2 28

9 20

 .

The determinant |W (1)| = 8/3 is nonzero, which implies the three functions
are independent by the Wronskian test.

20 Example (Solution Space of a Differential Equation) A fifth order lin-
ear differential equation has general solution

y(x) = c1 + c2x+ c3e
x + c4e

−x + c5e
2x.

Write the solution space S in vector space C5(−∞,∞) as the span of basis
vectors.

Solution: The answer is

S = span
(
1, x, ex, e−x, e2x

)
.

Details. A general solution is an expression for all solutions (no solutions
skipped) in terms of arbitrary constants, in this case, the constants c1 to c5.
We think of the constants as the invented symbols t1, t2, . . . in a matrix equa-
tion general solution. Then the expected basis vectors should be the partial
derivatives on the symbols:

∂c1y(x) = 1,
∂c2y(x) = x,
∂c3y(x) = ex,
∂c4y(x) = e−x,
∂c5y(x) = e2x.
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The five vectors so obtained already span the space S. All that remains is to
prove they are independent. The easiest method to apply in this case is the
Wronskian test.

Independence Details. Let W (x) be the Wronskian of the five solutions
above. Then row one is the list 1, x, ex, e−x, e2x and the other four rows are
successive derivatives of the first row.

W (x) =

∣∣∣∣∣∣∣∣∣∣
1 x ex e−x e2x

0 1 ex −e−x 2e2x

0 0 ex e−x 4e2x

0 0 ex −e−x 8e2x

0 0 ex e−x 16e2x

∣∣∣∣∣∣∣∣∣∣
.

The cofactor rule applied twice in succession to column 1 gives

W (x) =

∣∣∣∣∣∣
ex e−x 4e2x

ex −e−x 8e2x

ex e−x 16e2x

∣∣∣∣∣∣ .
We choose sample x = 0 to simplify the work:

W (0) =

∣∣∣∣∣∣
1 1 4
1 −1 8
1 1 16

∣∣∣∣∣∣ = −24.

Then the determinant |W (0)| = −24 is nonzero, which implies independence of
the functions in row one of W (x), by the Wronskian test.

A Faster Independence Test. Generally, we skip the Wronskian test and
apply the Euler solution atom test, in Theorem 32, which dispenses with inde-
pendence in a few seconds.12

The details of the Euler solution atom test are brief: we check that the list
1, x, ex, e−x, e2x is a finite set of distinct Euler solution atoms, then apply the
test to conclude that the set is independent.

21 Example (Extracting a Basis from a List) In the vector space V of all
polynomials, consider the subspace S = span(x + 1, 2x − 1, 3x + 4, x2).
Find a basis for S selected from the list x+ 1, 2x− 1, 3x+ 4, x2.

Solution: The answer: x+ 1, 2x− 1, x2.

The vectors x+ 1, 2x− 1 are independent, because one is not a scalar multiple
of the other (they are lines with slopes 1, 2).

The list x + 1, 2x − 1, 3x + 4 of three vectors is dependent. In detail, we first
will show span(x+ 1, 2x− 1) = span(1, x), using these two stages:

1 : 3x = (x+ 1) + (2x− 1)

2 : −3 = −2(x+ 1) + (2x− 1)

12The proof of the Euler solution atom test, not supplied in this textbook, involves
determinant evaluations similar to this example. Essential to the proof is the fact that
subsets of independent sets are independent.
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Divide by 3 and −3 to show span(x+ 1, 2x− 1) = span(1, x). Then 3x+ 4 is
in span(x+ 1, 2x− 1). We skip 3x+ 4 and go on to add x2 to the list. Vector
x2 is not in span(x+ 1, 2x−1) = span(1, x), because the Euler solution atoms
1, x, x2 are independent. The final independent set is x+ 1, 2x− 1, x2, and this
is a basis for S.

Details and Proofs

Proof of Theorem 21, Unique Representation of the Zero Vector: The
proof will be given for the characteristic case k = 3, because details for general
k can be written from this proof, by minor editing of the text.

Assume vectors ~v1, ~v2, ~v3 are independent and c1~v1 + c2~v2 + c3~v3 = ~0. Then
a1~v1 + x2~v2 + a3~v3 = b1~v1 + b2~v2 + b3~v3 where we define a1 = c1, a2 = c2,
a3 = c3 and b1 = b2 = b3 = 0. By independence, the coefficients match. By
the definition of the symbols, this implies the equations c1 = a1 = b1 = 0,
c2 = a2 = b2 = 0, c3 = a3 = b3 = 0. Then c1 = c2 = c3 = 0.

Conversely, assume c1~v1 + c2~v2 + c3~v3 = ~0 implies c1 = c2 = c3 = 0. If

a1~v1 + a2~v2 + a3~v3 = b1~v1 + b2~v2 + b3~v3,

then subtract the right side from the left to obtain

(a1 − b1)~v1 + (a2 − b2)~v2 + (a3 − b3)~v3 = ~0.

This equation is equivalent to

c1~v1 + c2~v2 + c3~v3 = ~0

where the symbols c1, c2, c3 are defined by c1 = a1−b1, c2 = a2−b2, c3 = a3−b3.
The theorem’s condition implies that c1 = c2 = c3 = 0, which in turn implies
a1 = b1, a2 = b2, a3 = b3. The proof is complete.

Proof of Theorem 22, Subsets of Independent Sets: The idea will be
communicated for a set of three independent vectors ~v1, ~v2, ~v3. Let the subset
to be tested consist of the two vectors ~v1, ~v2. We form the vector equation

c1~v1 + c2~v2 = ~0

and solve for the constants c1, c2. If c1 = c2 = 0 is the only solution, then ~v1, ~v2
is a an independent set.

Define c3 = 0. Because c3~v3 = ~0, the term c3~v3 can be added into the previous
vector equation to obtain the new vector equation

c1~v1 + c2~v2 + c3~v3 = ~0.

Independence of the three vectors implies c1 = c2 = c3 = 0, which in turn
implies c1 = c2 = 0, completing the proof that ~v1, ~v2 are independent.

The proof for an arbitrary independent set ~v1, . . . , ~vk is similar. By renumber-
ing, we can assume the subset to be tested for independence is ~v1, . . . , ~vm for
some index m ≤ k. The proof amounts to adapting the proof for k = 3 and
m = 2, given above. The details are left to the reader.
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Because a single nonzero vector is an independent subset of any list of vectors,
then a subset of a dependent set can be independent. If the subset of the
dependent set is the whole set, then the subset is dependent. In conclusion,
subsets of dependent sets can be either independent or dependent.

Proof of Theorem 27, Rank-Nullity Test: The proof will be given for
k = 3, because a small change in the text of this proof is a proof for general k.

Suppose rank(A) = 3. Then there are 3 leading ones in rref(A) and zero free
variables. Therefore, A~c = ~0 has unique solution ~c = ~0.

The independence of the 3 vectors is decided by solving the vector equation

c1~v1 + c2~v2 + c3~v3 = ~0

for the constants c1, c2, c3. The vector equation says that a linear combination
of the columns of matrix A is the zero vector, or equivalently, A~c = ~0. Therefore,
rank(A) = 3 implies ~c = ~0, or equivalently, c1 = c2 = c3 = 0. This implies that
the 3 vectors are linearly independent.

If rank(A) < 3, then there exists at least one free variable. Then the equation
A~c = ~0 has at least one nonzero solution ~c. This implies that the vectors are
dependent.

The proof is complete.

Proof of Theorem 28, Determinant Test: The proof details will be done
for n = 3, because minor edits to this text will give the details for general n.

Algebraic independence of vectors ~v1, ~v2, ~v3 requires solving the system of
equations

c1~v1 + c2~v2 + c3~v3 = ~0

for constants c1, c2, c3. The left side of the equation is a linear combination
of the columns of the augmented matrix A = aug(~v1, ~v2, ~v3), and therefore the
system can be represented as the matrix equation A~c = ~0. If det(A) 6= 0, then
A−1 exists. Multiply the equation A~c = ~0 by the inverse matrix to give

A~c = ~0

A−1A~c = A−1~0

I~c = A−1~0

~c = ~0.

Then ~c = ~0, or equivalently, c1 = c2 = c3 = 0. The vectors ~v1, ~v2, ~v3 are
independent.

Conversely, if the vectors are independent, then the system A~c = ~0 has a unique
solution ~c = ~0, known to imply A−1 exists or equivalently det(A) 6= 0. The
proof is complete.

Proof of Theorem 29, Orthogonal Vector Test: The proof will be given
for k = 3, because the details are easily supplied for k vectors, by modifying
the displays in the proof. To test independence of the three vectors, we must
solve the system of equations

c1~v1 + c2~v2 + c3~v3 = ~0
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for the constants c1, c2, c3. This is done for constant c1 by taking the dot
product of the above equation with vector ~v1, to obtain the scalar equation

c1~v1 · ~v1 + c2~v1 · ~v2 + c3~v1 · ~v3 = ~v1 ·~0.

Using the orthogonality relations ~v1 · ~v2 = 0, ~v2 · ~v3 = 0, ~v3 · ~v1 = 0, then the
scalar equation reduces to

c1~v1 · ~v1 + c2(0) + c3(0) = 0.

Because ~v1 · ~v1 > 0, then c1 = 0. Symmetrically, vector ~v2 replacing ~v1, the
scalar equation becomes

c1(0) + c2~v2 · ~v2 + c3(0) = 0.

Again, we show c2 = 0. The argument for c3 = 0 is similar. The conclusion:
c1 = c2 = c3 = 0. The three vectors are independent. The proof is complete.

Proof of Theorem 31, Wronskian Test: The objective of the proof is to
solve for the constants c1, . . . , cn in the equation

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, for all x.

The functions are proved independent, provided all the constants are zero. The
idea of the proof, attributed to Wronski, is to differentiate the above equa-
tion n − 1 times, then substitute x = x0 to obtain a homogeneous n × n
system A~c = ~0 for the components c1, . . . , cn of the vector ~c. Because
|A| = W (f1, . . . , fn)(x0) 6= 0, the inverse matrix A−1 = adj(A)/|A| exists.
Multiply A~c = ~0 on the left by A−1 to obtain ~c = ~0, completing the proof.

Proof of Theorem 33, Vandermonde Determinant Identity: Let us
prove the identity for the case k = 3, which serves to simplify notation and
displays. Assume distinct samples x1, x2, x3. We hope to establish for k = 3
the identity

det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

The identity is proved from determinant properties, as follows. Replace x1 by
x in the Vandermonde matrix followed by evaluating the determinant. This
defines the function f(x) = det(A), where A = V (x, x2, x3). Cofactor expan-
sion along row one of det(A) reveals that the determinant f(x) = det(A) is a
polynomial in variable x of degree 2:

f(x) = (1) cof(A, 1, 1) + (x) cof(A, 1, 2) + (x2) cof(A, 1, 3).

Duplicate rows in a determinant cause it to have zero value, therefore A has
determinant zero when we substitute x = x2 or x = x3. Then the quadratic
equation f(x) = 0 has distinct roots x2, x3. The factor theorem of college
algebra applies to give two factors x− x2 and x− x3, and then

f(x) = c(x3 − x)(x2 − x),

where c is some constant. Examine the cofactor expansion along the first
row in the previous display, then match coefficients of x2, to show that c =
cof(A, 1, 3) = (−1)1+3 minor(A, 1, 3) = det(V (x2, x3). Then

f(x) = det(V (x2, x3))(x3 − x)(x2 − x).
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After substitution of x = x1, the equation becomes

det(V (x1, x2, x3)) = det(V (x2, x3))(x3 − x1)(x2 − x1).

The expansion of det(V (x2, x3)) =

∣∣∣∣ 1 x2
1 x3

∣∣∣∣ = x3 − x2 is by Sarrus’ Rule.

Then
det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

Remarks on Mathematical Induction. An induction argument for the k×k
case proves that

det(V (x1, x2, . . . , xk)) = det(V (x2, . . . , xk))Πk
j=2(xj − x1).

This is a difficult induction for a novice. The reader should try first to establish
the above identity for k = 4, by repeating the cofactor expansion step in the
4 × 4 case. The preceding identity is solved recursively to give the claimed
formula for the case k = 3:

det(V (x1, x2, x3)) = det(V (x2, x3))[(x3 − x1)(x2 − x1)]
= det(V (x3))(x3 − x2)[(x3 − x1)(x2 − x1)]
= 1 · (x3 − x2)(x3 − x1)(x2 − x1).

The induction proof uses a step like the one below, in which the identity is
assumed for all matrix dimensions less than 4:

det(V ) = det(V (x1, x2, x3, x4))
= det(V (x2, x3, x4))[(x4 − x1)(x3 − x1)(x2 − x1)]
= (x4 − x3)(x4 − x2)(x3 − x2)[(x4 − x1)(x3 − x1)(x2 − x1)]
= (x4 − x3)(x4 − x2)(x4 − x1)(x3 − x2)(x3 − x1)(x2 − x1).

Exercises 5.4

Scalar and Vector General Solu-
tion. Given the scalar general solution
of A~x = ~0, find the vector general so-
lution

~x = t1~u1 + t2~u2 + · · ·

where symbols t1, t2, . . . denote arbi-
trary constants and ~u1, ~u2, . . . are fixed
vectors.

1. x1 = 2t1, x2 = t1 − t2, x3 = t2

2. x1 = t1 + 3t2, x2 = t1, x3 = 4t2,
x4 = t2

3. x1 = t1, x2 = t2, x3 = 2t1 + 3t2

4. x1 = 2t1+3t2+t3, x2 = t1, x3 = t2,
x4 = t3

Vector General Solution. Find the
vector general solution ~x of A~x = ~0.

5. A =

(
1 2
2 4

)

6. A =

(
1 −1
−1 1

)

7. A =

 1 2 0
2 4 0
0 0 0



8. A =

 1 1 −1
1 1 0
0 0 1



9. A =


1 1 −1 0
1 1 0 0
0 0 1 0
2 2 −1 0





390

10. A =


1 1 0 0
2 2 0 0
0 0 1 1
0 0 2 2


Dimension.

11. Give four examples in R3 of
S = span(~v1, ~v2, ~v3) (3 vectors re-
quired) which have respectively di-
mensions 0, 1, 2, 3.

12. Give an example in R3 of 2-
dimensional subspaces S1, S2 with
only the zero vector in common.

13. Let S = span(~v1, ~v2) in abstract
vector space V . Explain why
dim(S) ≤ 2.

14. Let S = span(~v1, . . . , ~vk) in ab-
stract vector space V . Explain why
dim(S) ≤ k.

15. Let S be a subspace of R3 with
basis ~v1, ~v2. Define ~v3 to be the
cross product of ~v1, ~v2. What is
dim(span(~v2, ~v3))?

16. Let S1, S2 be subspaces ofR4 such
that dim(S1) dim(S2) = 2. Assume
S1, S2 have only the zero vector in
common. Prove or give a counter-
example: the span of the union of
S1, S2 equals R4.

Independence in Abstract Spaces.

17. Assume linear combinations of
vectors ~v1, ~v2 are uniquely deter-
mined, that is, a1~v1+a2~v2 = b1~v1+
b2~v2 implies a1 = b1, a2 = b2.
Prove this result: If c1~v1 + c2~v2 =
~0, then c1 = c2 = 0.

18. Assume the zero linear combina-
tion of vectors ~v1, ~v2 is uniquely
determined, that is, c1~v1+c2~v2 = ~0
implies c1 = c2 = 0. Prove this re-
sult: If a1~v1 + a2~v2 = b1~v1 + b2~v2,
then a1 = b1, a2 = b2.

19. Prove that two nonzero vectors
~v1, ~v2 in an abstract vector space
V are independent if and only if ~v1
is not a constant multiple of ~v2.

20. Let ~v1 be a vector in an abstract
vector space V . Prove that the one-
element set ~v1 is independent if and
only if ~v1 is not the zero vector.

21. Let V be an abstract vector space
and assume ~v1, ~v2 are independent
vectors in V . Define ~u1 = ~v1 + ~v2,
~u2 = ~v1 + 2~v2. Prove that ~u1, ~u2
are independent in V .
Advice: Fixed vectors not assumed!

Bursting the vector packages is impos-

sible, there are no components.

22. Let V be an abstract vector space
and assume ~v1, ~v2, ~v3 are indepen-
dent vectors in V . Define ~u1 =
~v1+~v2, ~u2 = ~v1+4~v2, ~u3 = ~v3−~v1.
Prove that ~u1, ~u2, ~u3 are indepen-
dent in V .

23. Let S be a finite set of indepen-
dent vectors in an abstract vector
space V . Prove that none of the
vectors can be the zero vector.

24. Let S be a finite set of independent
vectors in an abstract vector space
V . Prove that no vector in the list
can be a linear combination of the
other vectors.

The Spaces Rn.

25. (Scalar Multiply) Let ~x =

x1x2
x3


have components measured in cen-
timeters. Report constants c1, c2,
c3 for re-scaled data c1~x, c2~x, c3~x
in units of kilometers, meters and
millimeters.

26. (Matrix Multiply) Let ~u =(
x1, x2, x3, p1, p2, p3

)T
have po-

sition x-units in kilometers and



5.4 Independence, Span and Basis 391

momentum p-units in kilogram-
centimeters per millisecond. Deter-
mine a matrix M such that the vec-
tor ~y = M~u has SI units of meters
and kilogram-meters per second.

27. Let ~v1, ~v2 be two independent vec-
tors in Rn. Assume c1~v1 + c2~v2
lies strictly interior to the parallel-
ogram determined by ~v1, ~v2. Give
geometric details explaining why
0 < c1 < 1 and 0 < c2 < 1.

28. Prove the 4 scalar multiply toolkit
properties for fixed vectors in R3.

29. Define

~0 =

0
0
0

 ,−~v =

−v1−v2
−v3

 .

Prove the 4 addition toolkit prop-
erties for fixed vectors in R3.

30. Use the 8 property toolkit in R3

to prove that zero times a vector is
the zero vector.

31. Let A be an invertible 3 × 3 ma-
trix. Let ~v1, ~v2, ~v3 be a basis for
R3. Prove that A~v1, A~v2, A~v3 is a
basis for R3.

32. Let A be an invertible 3 × 3 ma-
trix. Let ~v1, ~v2, ~v3 be dependent in
R3. Prove that A~v1, A~v2, A~v3 is a
dependent set in R3.

Digital Photographs. Let V be the
vector space of all 2 × 3 matrices. A
matrix in V is a 6-pixel digital photo,
a sub-section of a larger photo.

Replace one zero in the 2× 3 zero ma-
trix with a one. The 6 answers B1,
. . . , B6 are numbered by Bj [n,m] = 1
when 3(n− 1) +m = j.

33. Prove that B1, . . . , B6 are inde-
pendent and span V : they are a
basis for V . Each Bi lights up
one pixel in the 2× 3 sub-photo.

34. Define red, green and blue
monochrome matrices R,G,B by2 0 0

0 1 1
5 8 1

 ,

3 0 0
0 4 0
0 1 0

 ,

5 0 0
0 3 0
1 0 5

 .

Define base x = 16. Compute
A = R+ xG+ x2B.

35. Let A = 2

(
1 0 0
0 0 0

)
+ 4

(
0 0 0
0 1 0

)
.

Assume a black and white im-
age. Describe photo A, assuming
0 means black.

36. Let c1, c2 be integer encodings of
RGB intensities. Describe the
photo A = c1B1 + c2B3.

Polynomial Spaces. Let V be the
vector space of all cubic or less poly-
nomials p(x) = c0 + c1x+ c2x

2 + c3x
3.

37. Find a subspace S of V , dim(S) =
2, which contains the vector 1 + x.

38. Let S be the subset of V spanned
by x, x2 and x3. Prove that S is a
subspace of V which does not con-
tain the polynomial 1 + x.

39. Define set S by the conditions
p(0) = 0, p(1) = 0. Find a basis
for S.

40. Define set S by the condition

p(0) =
∫ 1

0
p(x)dx. Find a basis for

S.

The Space C(E). Define ~f to be
the vector package with domain E =
{x : − 1 ≤ x ≤ 1} and equation
y = |x|. Similarly, ~g is defined by equa-
tion y = x.

41. Show independence of ~f,~g.

42. Find the dimension of span(~f,~g).

43. Let h(x) = 0 on −1 ≤ x ≤ 0,
h(x) = −x on 0 ≤ x ≤ 1. Show

that ~h is in C(E).

44. Let h(x) = −1 on −1 ≤ x ≤ 0,
h(x) = 1 on 0 ≤ x ≤ 1. Show that
~h is not in C(E).
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45. Let h(x) = 0 on −1 ≤ x ≤ 0,
h(x) = −x on 0 ≤ x ≤ 1. Show

that ~h is in span(~f,~g).

46. Let h(x) = tan(πx/2) on −1 <
x < 1, h(1) = h(−1) = 0. Explain

why ~h is not in C(E)

The Space C1(E). Define ~f to be
the vector package with domain E =
{x : − 1 ≤ x ≤ 1} and equation
y = x|x|. Similarly, ~g is defined by
equation y = x2.

47. Verify that ~f is in C1(E), but its
derivative is not.

48. Show that ~f,~g are independent in
C1(E).

The Space Ck(E). Let E be the unit

interval 0 ≤ x ≤ 1 and define ~f to be
domain E plus the equation y = e−x

2

49. Justify that ~f belongs to Ck(E)
for all k ≥ 1.

50. Compute the first three deriva-
tives of ~f at x = 0.

Solution Space. A differential equa-
tions solver finds general solution y =
c1 + c2x + c3e

x + c4e
−x. Use vector

space V = C4(E) where E is the whole
real line.

51. Write the solution set S as the
span of four vectors in V .

52. Find a basis for the solution space
S of the differential equation. Ver-
ify independence using the sam-
pling test or Wronskian test.

53. Find a differential equation y′′ +
a1y
′ + a0y = 0 which has solution

y = c1 + c2x.

54. Find a differential equation y′′′′ +
a3y
′′′+a2y

′′+a1y
′+a0y = 0 which

has solution y = c1 + c2x+ c3e
x +

c4e
−x.

Algebraic Independence Test for
Two Vectors. Solve for c1, c2 in
the independence test for two vectors,
showing all details.

55. ~v1 =

(
1
2

)
, ~v2 =

(
1
−1

)

56. ~v1 =

 1
−1

0

 , ~v2 =

1
1
0


Dependence of two vectors. Solve
for c1, c2 not both zero in the indepen-
dence test for two vectors, showing all
details for dependency of the two vec-
tors.

57. ~v1 =

(
1
2

)
, ~v2 =

(
2
4

)

58. ~v1 =

 1
−1

0

 , ~v2 =

−2
2
0


Independence Test for Three Vec-
tors. Solve for the constants c1, c2, c3
in the relation c1~v1 + c2~v2 + c3~v3 = ~0.
Report dependent of independent vec-
tors. If dependent, then display a de-
pendency relation.

59.

 1
−1

0

,

−1
2
0

,

0
2
0



60.

 1
−1

0

,

−1
2
0

,

0
1
1


Independence in an Abstract Vec-
tor Space. In vector space V , report
independence or a dependency relation
for the given vectors.

61. Space V = C(−∞,∞), ~v1 = 1+x,
~v2 = 2 + x, ~v3 = 3 + x2.

62. Space V = C(−∞,∞), ~v1 = x3/5,
~v2 = x2, ~v3 = 2x2 + 3x3/5
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63. Space V is all 3× 3 matrices. Let

~v1 =

1 1 0
0 1 1
0 0 1

, ~v2 =

0 1 0
0 0 1
0 1 1

,

~v3 =

2 5 0
0 2 5
0 3 5

.

64. Space V is all 2× 2 matrices. Let

~v1 =

(
1 1
0 1

)
, ~v2 =

(
−1 1

1 1

)
,

~v3 =

(
0 2
1 2

)
.

Rank Test. Compute the rank of the
augmented matrix to determine inde-
pendence or dependence of the given
vectors.

65.


1
−1

0
0

,


−1

2
0
0

,


0
2
0
0



66.


0
1
−1

0

,


0
−1

2
0

,


0
0
1
1


Determinant Test. Evaluate the de-
terminant of the augmented matrix
to determine independence or depen-
dence of the given vectors.

67.

−1
3
0

,

2
1
0

,

3
5
0



68.

 0
1
−1

,

 0
−1

2

,

1
0
0


Sampling Test for Functions. In-
vent samples to verify independence.

69. cosh(x), sinh(x)

70. x7/3, x sin(x)

71. 1, x, sin(x)

72. 1, cos2(x), sin(x)

Sampling Test and Dependence.
For three functions f1, f2, f3 to be de-
pendent, constants c1, c2, c3 must be
found such that

c1f1(x) + c2f2(x) + c3f3(x) = 0.

The trick is that c1, c2, c3 are not all
zero and the relation holds for all
x. The sampling test method can dis-
cover the constants, but it is unable
to prove dependence!

73. Functions 1, x, 1 + x are depen-
dent. Insert x = 0, 1, 2 and solve
for c1, c2, c3, to discover a depen-
dency relation.

74. Functions 1, cos2(x), sin2(x) are
dependent. Cleverly choose 3 val-
ues of x, insert them, then solve for
c1, c2, c3, to discover a dependency
relation.

Vandermonde Determinant.

75. Let V =

(
1 x1
1 x2

)
. Verify by direct

computation the formula

|V | = x2 − x1.

76. Let V =

1 x1 x
2
1

1 x2 x
2
2

1 x3 x
2
3

. Verify by di-

rect computation the formula

|V | = (x3 − x2)(x3 − x1)(x2 − x1).

Wronskian Test for Functions. Ap-
ply the Wronskian Test to verify inde-
pendence.

77. cos(x), sin(x).

78. cos(x), sin(x), sin(2x).

79. x, x5/3.

80. cosh(x), sinh(x).

Wronskian Test: Theory.

81. The functions x2 and x|x| are con-
tinuously differentiable and have
zero Wronskian. Verify that they
fail to be dependent on −1 <
x < 1.
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82. The Wronskian Test can verify
the independence of the powers
1, x, . . . , xk. Show the determinant
details.

Extracting a Basis. Given a list of
vectors in space V = R4, extract a
largest independent subset.

83.


1
−1

0
0

,


−1

2
0
0

,


0
2
0
0

,


0
−1

1
0

,


−1

1
1
0



84.


0
−1

1
0

,


0
1
1
0

,


0
2
3
0

,


1
−1

0
1

,


1
0
1
1


Extracting a Basis. Given a list of

vectors in space V = C(−∞,∞), ex-
tract a largest independent subset.

85. x, x cos2(x), x sin2(x), ex, x+ ex

86. 1, 2 + x, x
1+x2 ,

x2

1+x2

Euler Solution Atom. Identify the
Euler solution atoms in the given list.
Strictly apply the definition: ex is an
atom but 2ex is not.

87. 1, 2 + x, e2.15x, ex
2

, x
1+x2

88. 2, x3, ex/π, e2x+1, ln |1 + x|

Euler Solution Atom Test. Estab-
lish independence of set S1.
Suggestion: First establish an iden-
tity span(S1) = span(S2), where S2 is
an invented list of distinct atoms. The
Test implies S2 is independent. Ex-
tract a largest independent subset of
S1, using independence of S2.

89. Set S1 is the list 2, 1 + x2, 4 +
5ex, πe2x+π, 10x cos(x).

90. Set S1 is the list 1 + x2, 1 −
x2, 2 cos(3x), cos(3x) + sin(3x).


