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Math 2280 Extra Credit Problems
Chapter 9

S2017

Submitted work. Please submit one stapled package per chapter. Kindly label problems Extra Credit . Label each

problem with its corresponding problem number, e.g., Xc1.2-4 . Please attach this printed sheet to simplify your work.

Chapter 9: 9.1, 9.2, 9.3 – Periodic Functions and Fourier Series

Problem Xc9.0-1. (Trigonometric Identities and Integrals)

(a) Use the trigonometric identity cos(a+ b) = cos a cos b− sin a sin b to derive the trigonometric identity

cosmx cosnx =
1

2
(cos((m+ n)x) + cos((m− n)x)) .

(b) Show the details for integrating cosmx cosnx for nonnegative integers m 6= n over −π ≤ x ≤ π.

(c) Derive the trigonometric identity cos2 θ = 1
2 + 1

2 cos 2θ from the trigonometric identities cos(a + b) = cos a cos b −
sin a sin b and cos2 θ + sin2 θ = 1.

(d) Integrate cos2 nx for integers n = 0, 1, 2, 3, . . . over −π ≤ x ≤ π. Explain geometrically why there are two different
answers.

Problem Xc9.0-2. (Orthogonality)

Two vectors ~A, ~B are said to be orthogonal if their dot product is zero. For vectors of dimension n, this means
a1b1 + a2b2 + · · ·+ anbn = 0.

(a) The equation
∫ 1

0
f(x)g(x)dx = 0 can be viewed as the Riemann sum is approximately zero. Argue that this means

~A · ~B = 0 to so many decimal places, where ~A and ~B are vector samples of f and g represented in the Riemann sum
h
∑n
j=1 f(jh)g(jh), h = 1

n .

(b) Prove the orthogonality relation below from the standard one for the trigonometric system on −π ≤ x ≤ π, by a
change of variables. The method leads to six orthogonality relations for the trigonometric system {cos(mπx/T )}∞m=0,
{sin(nπx/T )}∞n=1 on −T ≤ u ≤ T .∫ T

−T
cos(mπu/T ) cos(nπu/T )du =

{
0 m 6= n,
T m = n.

Problem Xc9.1-1. (Periodic Functions)

(a) Find the period, amplitude and frequency of sin2(4x).

(b) Let f be periodic of period 1 and on 0 ≤ x ≤ 1 f(x) = f0(x), where f0(x) = 1 on 0 ≤ x < 1/2, f0(x) = 0 on
1/2 ≤ x < 1, f0(1) = 0. Graph f on −2 ≤ x ≤ 3.

Problem Xc9.1-8. (Sums of Periodic Functions)

(a) Find the period of cosx+ cos 3x.

(b) Find the period of e2 cos 2x.



Problem Xc9.1-8. (Periodic Functions)

Explain why cosx+ cos 3πx is not periodic.

Problem Notes. One explanation uses independence of functions. Another explanation analyzes the number of solutions of the

equation cosx+ cos 2πx = 2. Expected in this case is a graphic and a mathematical argument [use −2 ≤ f(x) ≤ 2].

Problem Xc9.1-18. (Change of Variables)

(a) Prove that f(x) continuous and T -periodic implies

∫ T

0

f(x)dx =

∫ nT+T

nT

f(u)du.

(b) Assume f(x) is 2π-periodic and continuous. Prove that F (x) =
∫ x
0
f(u)du is 2π-periodic if and only if

∫ 2π

0
f(x)dx = 0.

Problem Xc9.1-20. (Floor Function)

The greatest integer function or staircase function is represented using a library function floor(x), available in most
computer mathematical workbenches, including MATLAB and maple. Don’t confuse floor with trunc – they are different
functions!

(a) Plot floor(x) and x − floor(x) in MATLAB or maple on −3 ≤ x ≤ 5. Programs Excel and OpenOffice can also be
used to make the plot. The floor function in Excel is x→ FLOOR(x, 1).

(b) Argue from the graphic that x− floor(x) is periodic of period 1.

(c) Define g(x, T ) = x−T floor((x+T/2)/T ). Show mathematically that g(x) = x on |x| < T/2. That the triangular
wave g is T -periodic can be seen from its graphic.

(d) Plot the 2-periodic triangular wave defined by f(x) = |x− 2 floor((x+ 1)/2)|.
Problem Notes: The function f in (d) equals |g(x, T )|, where T = 2 and g is defined in (c) above. The function a|g(x, T )| is called

a triangular wave of height a and period T . It is the composition of u→ a|u| and x→ g(x, T ).

Problem Xc9.2-5. (Fourier Series Partial Sum Plots)

(a) Plot on −2π ≤ x ≤ 3π the partial sums s2(x), s6(x), s12(x), s20(x) of the Fourier series for the sawtooth wave f
constructed from f1(x) = |x| on |x| ≤ π:

sN (x) =
π

2
− 4

π

N∑
m=0

1

(2m+ 1)2
cos(2mx+ x).

The four graphics show the convergence of the partial sums to the limiting Fourier series. This is an example of a
filmstrip of 4 graphics.

(b) Explain what happens in the graphic of (a) at points of discontinuity of f ′.

Problem Xc9.2-5a. (Fourier Series Partial Sum Plots)

(a) Plot on −2π ≤ x ≤ 3π the partial sums s2(x), s6(x), s12(x), s20(x) of the Fourier series for the sawtooth wave f
constructed from f1(x) = (π − x)/2 on 0 < x ≤ 2π:

sN (x) =

N∑
n=1

1

n
sin(nx).

The four snapshots show the convergence of the partial sums to the limiting Fourier series.

(b) Explain what happens in the graphic of (a) at points of discontinuity of f .

(c) Illustrate Gibb’s phenomenon. In particular, graph |f(x) − sN (x)| on −2π ≤ x ≤ 3π, for N = 6, 12, 20. Then
estimate the jump at points of discontinuity of f ′.

Answer: About 1.25.

Problem Xc9.2-8. (Fourier Series Computation and Graphics)

Let f be the 2π-periodic extension of the rectified cosine wave f0(x) = | cosx| on |x| ≤ π.

(a) Draw a graphic of f(x) on −4π ≤ x ≤ 5π.

(b) Show the derivation details for the Fourier series
2

π
− 4

π

∞∑
m=1

(−1)m

4m2 − 1
cos 2mx.

(c) Plot the Fourier series on −2π ≤ x ≤ 2π. Explain why it differs from the plot of f(x) on the same interval.

2



Problem Xc9.2-15. (Fourier Series Computation)

Show the derivation details for the Fourier coefficients of f(x) constructed from f2(x) = e−|x| on |x| ≤ π. The Fourier
series is

eπ − 1

πeπ
+

2

πeπ

∞∑
m=1

eπ + (−1)m+1

m2 + 1
cosmx.

Problem Xc9.0-3. (Even and Odd Functions)

(a) Define even function and odd function. Such functions don’t have to be continuous, but they must be defined for all
x.

(b) Show the mathematical details in the derivation of the result (Even)(Odd)=Odd.

(c) Prove by a u-substitution that
∫ p
−p f(x)dx = 2

∫ p
0
f(x)dx for an even continuous function f and

∫ p
−p g(x)dx = 0 for

an odd continuous function g(x).

Problem Xc9.3-7. (Fourier Series Arbitrary Period)

(a) Define f to be the periodic extension of period 4 of the base function f0(x) = 1− x on 0 ≤ x ≤ 2, f0(x) = −1− x
on −2 ≤ x ≤ 0. Plot f(x) on −8 ≤ x ≤ 6.

(b) Show the derivation details for the Fourier series of f(x):

4

π

∞∑
n=1

sin(nπx)

2n
.

Problem Xc9.3-32. (Failure of Term-by-Term Differentiation)

Show that the Fourier series

∞∑
n=1

sinnx

n
of the sawtooth wave f cannot be differentiated term-by-term to obtain the

Fourier series of f ′.

Problem Xc9.3-34. (Term-by-Term Integration)

Integrate the Fourier series of the triangular wave f constructed from f0(x) = x on |x| ≤ 1, in order to find the Fourier
series of the parabolic wave g constructed from g0(x) = x2 on |x| ≤ 1.

Chapter 9: 9.3, 9.4 – Fourier Series Methods

Problem Xc9.0-4. (Periodic Extensions)

Lemma 1. The function tw(x) = x− floor(x+ 1/2) is a triangular wave of period 1 with shape x on |x| < 1/2.

Lemma 2. Given f0(x) defined on |x| ≤ T/2, then f(x) = f0(T tw(x/T )) is the T -periodic extension of f0(x) from
|x| ≤ T/2 to −∞ < x <∞.

Assume Lemmas 1 and 2 for this problem.

(a) Plot f1(x) = 3 tw(x/3) on −6 ≤ x ≤ 6. Document its period on the graphic.

(b) Define f2(x) = | cos(0.5π tw(2x/π))|. Make a plot on −2π ≤ x ≤ 3π. Document its period on the graphic.

Problem Xc9.0-5. (Even and Odd Periodic Extensions)

Definition. Define signum(x) =

{
x
|x| x 6= 0,

0 x = 0.
.

There is no agreement in literature how to define signum(0). Here, signum(x) takes on only the values 1, −1 and 0.

(a) Let p = 2 and define g1(x) = x2 on 0 ≤ x ≤ p. Let g2(x) = signum(x)g1(|x|) be the odd extension of g1 to |x| ≤ p.
Let T = 2p. Define f3(x) = g2(T tw(x/T )) to be the odd extension of g2(x) from |x| ≤ p to −∞ < x <∞. Plot f3 on
|x| ≤ 5. This sequence of formulas works in general, for any p and any g1 (no justification requested).
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(b) Let p = 2 and define h1(x) = x2 on 0 ≤ x ≤ p. Let h2(x) = h1(|x|) be the even extension of h1 to |x| ≤ p. Let
T = 2p. Define h3(x) = h2(T tw(x/T )) to be the even extension of h2(x) from |x| ≤ p to −∞ < x < ∞. Plot h3 on
|x| ≤ 5. This sequence of formulas works in general, for any p and any h1 (no justification requested).

Problem Xc9.0-6. (Dirichlet Kernel Identity)

Establish by trigonometric identity methods the formula [the right side is called Dirichlet’s Kernel]

1

2
+ cosx+ cos 2x+ · · ·+ cosnx =

sin
(
nx+ x

2

)
2 sin

(
x
2

) .

Hint: Cross multiply by 2 sin(x/2). Expand terms using a trigonometric identity, which produces a telescoping sum.

Problem Xc2.4-7. (Half-Range Expansions)

(a) Find a simple algebraic formula for the even π-periodic extension of f0(x) = cosx on 0 ≤ x ≤ π/2.

(b) Find the Fourier coefficients for the half-range expansion of f0(x) = cosx on 0 ≤ x ≤ π/2.

Problem Xc9.4-15. (Half-Range Sine Expansion)

Find the Fourier coefficients for the half-range sine series expansion of ex on 0 ≤ x ≤ 1.

Problem Xc9.4-6. (Complex Fourier Series)

Find the complex form of the Fourier series for sin 3x without evaluating any trigonometric integrals.

Hint: Use sinu = 1
2i

(
eiu − e−iu

)
.

Problem Xc9.4-11. (Series Identities)

Let x = 0 in the complex Fourier series expansion of ex in order to prove the formula

2π

eπ − e−π
=

∞∑
n=−∞

(−1)n

n2 + 1
.

Chapter 9: 9.5 – One Dimensional Heat Equation

Chapter 9: 9.5 – One Dimensional Heat Equation

Problem Xc9.6-13. (Nonhomogeneous Heat Equation)

Consider the one-dimensional heat conduction problem

ut = uxx, 0 ≤ x ≤ π, t > 0,
u(0, t) = 100,
u(π, t) = 50,
u(x, 0) = f(x).

Assume f(x) = 33x on 0 < x ≤ π/2, f(x) = 33π − 33x on π/2 < x < π. Find a solution formula for the temperature
u(x, t).

Problem Xc9.6-3. (Heat Conduction in an Insulated Bar)

Consider the one-dimensional heat conduction problem

ut = uxx, 0 ≤ x ≤ 1, t > 0,
ux(0, t) = 0,
ux(1, t) = 0,
u(x, 0) = cosπx

Find a solution formula for the temperature u(x, t) at location x along the bar at time t. Hint: Don’t integrate!

Remark. Asmar’s matching problem 3.6-3 has a piecewise example, using u(x, 0) = f(x). See the maple advice for problem 9.5-13,

to handle that case.
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Chapter 9: 9.6 – One Dimensional Wave Equation

Problem Xc9.6-1. (Wave Equation)

Derive the equation utt = 105uxx for the vibrations of a stretched homogeneous string with linear density ρ = 0.001
kg/m and tension τ = 100 N, with no forces other than the tension. State all assumptions used to obtain the model.
Make the presentation brief, by referencing a textbook for derivation details and results.

Problem Xc9.6-9a. (Separation of Variables)

Solve utt = uxx, u(0, t) = u(1, t) = 0, u(x, 0) = x(1− x), ut(x, 0) = sinπx, t ≥ 0, 0 ≤ x ≤ 1. The model is for a guitar
string of unit length.

Problem Xc9.6-9b. (Filmstrip Plots)

Plot partial sums of the answer to the previous problem,

u(x, t) =
1

π
sin(πx) sin(πt) +

∞∑
m=0

8

π3(2m+ 1)3
sin(2mπx+ πx) cos(2mπt+ πt),

at t = 0, 1, 2, 3. Choose the number of series terms for the four graphics by making the first graphic match x(1− x) on
0 ≤ x ≤ 1. This filmstrip has 4 frames, each frame corresponding to a time t. A frame has graph window 0 ≤ x ≤ 1,
a ≤ u ≤ b (you must choose a, b).

Problem Xc9.6-9c. (Surface Plot)

Plot a specific partial sum of the answer

u(x, t) =
1

π
sin(πx) sin(πt) +

∞∑
m=0

8

π3(2m+ 1)3
sin(2mπx+ πx) cos(2mπt+ πt)

on the domain 0 ≤ x ≤ 1, 0 ≤ t ≤ 4. Use all features possible of the 3D graphics program in order to produce the best
plot with fine accuracy, view and colors.

Problem Xc9.6-13. (Damped Vibrations of a String)

Solve the problem
utt(x, t) + ut(x, t) = uxx(x, t),

u(0, t) = 0,
u(π, t) = 0,
u(x, 0) = sinx,
ut(x, 0) = 0.

Problem Xc9.6-1. (Vibrating Finite String)

Solve the wave equation
∂2u

∂t2
= c2

∂2u

∂x2
with boundary and initial conditions u(0, t) = u(L, t) = 0, u(x, 0) = 1

2 sin πx
L +

1
4 sin 3πx

L + 2
5 sin 7πx

L , ut(x, 0) = 0, 0 < x < L, t ≥ 0. Use the series formula u(x, t) =
∑∞
n=1 bn sin nπx

L cos nπctL .

References: Edwards-Penney section 9.6 (2280 textbook) and Asmar’s text, PDE and BVP, section 1.2.

Problem Xc9.6-2. (Loudness)

The fraction of the loudness associated with the fundamental tone (b1-term in the series) is the quotient

F1 =

(
n2b2n

)∣∣
n=1∑∞

k=1 k
2b2k

Find an approximation to the percentage 100F1.

References: ProbXc9.6-1. The discussion of music in E&P includes a derivation of the formula for the percentage loudness 100Fn.
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Chapter 9: 9.6 – d’Alembert’s Method

Problem Xc9.6-15. (d’Alembert’s Solution)

Consider the problem
utt = uxx, 0 ≤ x ≤ 1, t ≥ 0,

u(0, t) = 0,
u(1, t) = 0,
u(x, 0) = f(x),
ut(x, 0) = 0.

Assume f(x) = 4x on 0 ≤ x ≤ 0.25, f(x) = 2− 4x on 0.25 < x ≤ 0.5, f(x) = 0 on 0.5 < x ≤ 1.

(a) Find a solution formula for u(x, t) using d’Alembert’s method.

(b) Plot a 3-frame filmstrip of the string shape at times t = 0, 0.25, 0.5.

# EXAMPLE. Let f(x)=4x on [0,.25], f(x)=2-4x on [.25,.5], f(x)=0 otherwise

# Asmar 3.4-15, D’Alembert’s solution of the wave equation, f=pulses,g=0

pulse:=(x,a,b)->piecewise(x<a,0,x<b,1,0);

f:=x->4*x*pulse(x,0,1/4)+(2-4*x)*pulse(x,1/4,1/2);

#plot(f(x),x=0..1);

F:=x->piecewise(x<0,-f(-x),f(x)); # Odd extension of f(x)

plot(F(x),x=-1..1);

u:=(x,t)->(1/2)*(F(x+t)+F(x-t));

#plot(u(x,0.7),x=-2..2);

plots[animate]( plot, [u(x,t),x=-3..3], t=0..1.5, trace=0, frames=50 );

Problem Xc9.6-18. (Energy Conservation and d’Alembert’s Solution)

Define

E(t) =
1

2

∫ L

0

(
u2t (x, t) + c2u2x(x, t)

)
dx.

Prove the energy conservation law, which says that the energy during free vibrations of a string is constant for all time.

Problem Notes. Show dE/dt = 0.

End of extra credit problems chapter 9.
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