Eigenanalysis

- What's Eigenanalysis?
- Fourier's Eigenanalysis Model is a Replacement Process
- Powers and Fourier's Model
- Differential Equations and Fourier's Model
- Fourier's Model Illustrated
- What is Eigenanalysis? What's an Eigenvalue? What's an Eigenvector?
- Data Conversion Example
- History of Fourier's Model
- Determining Equations. How to Compute Eigenpairs.
- Independence of Eigenvectors.

What's Eigenanalysis?	
8	

Matrix eigenanalysis is a computational theory for the matrix equation

$$\vec{y} = A\vec{x}$$
.

Fourier's Eigenanalysis Model

For exposition purposes, we assume A is a 3×3 matrix.

Eigenanalysis Notation

The scale factors λ_1 , λ_2 , λ_3 and independent vectors $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$ depend only on A. Symbols c_1 , c_2 , c_3 stand for arbitrary numbers. This implies variable $\vec{\mathbf{x}}$ exhausts all possible fixed vectors in R^3 .

Fourier's Model is a Replacement Process

$$A\left(c_{1}ec{ ext{v}}_{1}+c_{2}ec{ ext{v}}_{2}+c_{3}ec{ ext{v}}_{3}
ight)=c_{1}\lambda_{1}ec{ ext{v}}_{1}+c_{2}\lambda_{2}ec{ ext{v}}_{2}+c_{3}\lambda_{3}ec{ ext{v}}_{3}.$$

To compute $A\vec{\mathbf{x}}$ from $\vec{\mathbf{x}}=c_1\vec{\mathbf{v}}_1+c_2\vec{\mathbf{v}}_2+c_3\vec{\mathbf{v}}_3$, replace each vector $\vec{\mathbf{v}}_i$ by its scaled version $\lambda_i\vec{\mathbf{v}}_i$.

Fourier's model is said to **hold** provided there exist scale factors and independent vectors satisfying (1). Fourier's model is known to fail for certain matrices A.

Powers and Fourier's Model

Equation (1) applies to compute powers A^n of a matrix A using only the basic vector space toolkit. To illustrate, only the vector toolkit for R^3 is used in computing

$$A^5ec{ ext{x}} = x_1 \lambda_1^5 ec{ ext{v}}_1 + x_2 \lambda_2^5 ec{ ext{v}}_2 + x_3 \lambda_3^5 ec{ ext{v}}_3.$$

This calculation does not depend upon finding previous powers A^2 , A^3 , A^4 as would be the case by using matrix multiply.

Details for $A^3(\vec{\mathrm{x}})$

Let
$$\vec{\mathbf{x}} = x_1 \vec{\mathbf{v}}_1 + x_2 \vec{\mathbf{v}}_2 + x_3 \vec{\mathbf{v}}_3$$
. Then

$$egin{array}{lll} A^3(ec{\mathbf{x}}) &= A^2(A(ec{\mathbf{x}})) \ &= A^2(x_1\lambda_1ec{\mathbf{v}}_1 + x_2\lambda_2ec{\mathbf{v}}_2 + x_3\lambda_3ec{\mathbf{v}}_3) \ &= A(A(x_1\lambda_1ec{\mathbf{v}}_1 + x_2\lambda_2ec{\mathbf{v}}_2 + x_3\lambda_3ec{\mathbf{v}}_3)) \ &= A(x_1\lambda_1^2ec{\mathbf{v}}_1 + x_2\lambda_2^2ec{\mathbf{v}}_2 + x_3\lambda_3^2ec{\mathbf{v}}_3) \ &= x_1\lambda_1^3ec{\mathbf{v}}_1 + x_2\lambda_2^3ec{\mathbf{v}}_2 + x_3\lambda_3^3ec{\mathbf{v}}_3 \end{array}$$

Differential Equations and Fourier's Model

Systems of differential equations can be solved using Fourier's model, giving a compact and elegant formula for the general solution. An example:

$$egin{array}{lll} x_1' &=& x_1 \; + \; 3x_2, \ x_2' &=& 2x_2 \; - \; x_3, \ x_3' &=& - \; 5x_3. \end{array}$$

The general solution is given by the formula [Fourier's theorem, proved later]

$$egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = c_1 e^t egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 e^{2t} egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix} + c_3 e^{-5t} egin{pmatrix} 1 \ -2 \ -14 \end{pmatrix},$$

which is related to Fourier's model by the symbolic formulas

$$ec{\mathbf{x}}(0) = c_1 ec{\mathbf{v}}_1 + c_2 ec{\mathbf{v}}_2 + c_3 ec{\mathbf{v}}_3 \ ext{undergoes replacements } ec{\mathbf{v}}_i
ightarrow e^{\lambda_i t} ec{\mathbf{v}}_i ext{ to obtain} \ ec{\mathbf{x}}(t) = c_1 e^{\lambda_1 t} ec{\mathbf{v}}_1 + c_2 e^{\lambda_2 t} ec{\mathbf{v}}_2 + c_3 e^{\lambda_3 t} ec{\mathbf{v}}_3.$$

Fourier's model illustrated

Let

$$A = egin{pmatrix} 1 & 3 & 0 \ 0 & 2 & -1 \ 0 & 0 & -5 \end{pmatrix} \ \lambda_1 = 1, \qquad \lambda_2 = 2, \qquad \lambda_3 = -5, \ ec{ ext{v}}_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \ ec{ ext{v}}_2 = egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix}, \ ec{ ext{v}}_3 = egin{pmatrix} 1 \ -2 \ -14 \end{pmatrix}.$$

Then Fourier's model holds (details later) and

$$ec{ ext{x}} = c_1 egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix} + c_3 egin{pmatrix} 1 \ -2 \ -14 \end{pmatrix} & ext{implies} \ A ec{ ext{x}} = c_1(1) egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2(2) egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix} + c_3(-5) egin{pmatrix} 1 \ -2 \ -14 \end{pmatrix} & ext{implies} \ \end{pmatrix}$$

Eigenanalysis might be called the method of simplifying coordinates. The nomenclature is justified, because Fourier's model computes $\vec{\mathbf{y}} = A\vec{\mathbf{x}}$ by scaling independent vectors $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$, which is a triad or **coordinate system**.

What is Eigenanalysis?

The subject of **eigenanalysis** discovers a coordinate system \vec{v}_1 , \vec{v}_2 , \vec{v}_3 and scale factors λ_1 , λ_2 , λ_3 such that Fourier's model holds. Fourier's model simplifies the matrix equation $\vec{y} = A\vec{x}$, through the formula

$$A(c_1 ec{ ext{v}}_1 + c_2 ec{ ext{v}}_2 + c_3 ec{ ext{v}}_3) = c_1 \lambda_1 ec{ ext{v}}_1 + c_2 \lambda_2 ec{ ext{v}}_2 + c_3 \lambda_3 ec{ ext{v}}_3.$$

What's an Eigenvalue? _	
8	

It is a **scale factor**. An eigenvalue is also called a *proper value* or a *hidden value* or a *characteristic value*. Symbols λ_1 , λ_2 , λ_3 used in Fourier's model are eigenvalues.

The **eigenvalues** of a model are scale factors. Think of them as a system of units hidden in the matrix A.

What's an Eigenvector?

Symbols $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$ in Fourier's model are called eigenvectors, or *proper vectors* or *hidden vectors* or *characteristic vectors*. They are assumed independent.

The **eigenvectors** of a model are independent **directions of application** for the scale factors (eigenvalues). Think of each eigenpair $(\lambda, \vec{\mathbf{v}})$ as a coordinate axis $\vec{\mathbf{v}}$ where the action of matrix A is to move λ units along $\vec{\mathbf{v}}$.

Data Conversion Example

Let \vec{x} in R^3 be a data set variable with coordinates x_1 , x_2 , x_3 recorded respectively in units of meters, millimeters and centimeters. We consider the problem of conversion of the mixed-unit \vec{x} -data into proper MKS units (meters-kilogram-second) \vec{y} -data via the equations

(2)
$$egin{array}{ll} y_1 &= x_1, \ y_2 &= 0.001x_2, \ y_3 &= 0.01x_3. \end{array}$$

Equations (2) are a **model** for changing units. Scaling factors $\lambda_1 = 1$, $\lambda_2 = 0.001$, $\lambda_3 = 0.01$ are the **eigenvalues** of the model.

Data Conversion Example – Continued

Problem (2) can be represented as $\vec{y} = A\vec{x}$, where the diagonal matrix A is given by

$$A = \left(egin{array}{ccc} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{array}
ight), \quad \lambda_1 = 1, \,\, \lambda_2 = rac{1}{1000}, \,\, \lambda_3 = rac{1}{100}.$$

Fourier's model for this matrix A is

$$A \left(c_1 egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} + c_3 egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}
ight) = c_1 \lambda_1 egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 \lambda_2 egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} + c_3 \lambda_3 egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

The eigenvectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 of the model are the columns of the identity matrix.

Summary _____

The **eigenvalues** of a model are **scale factors**, normally represented by symbols

$$\lambda_1, \quad \lambda_2, \quad \lambda_3, \quad \ldots$$

The **eigenvectors** of a model are independent **directions of application** for the scale factors (eigenvalues). They are normally represented by symbols

$$\vec{\mathrm{v}}_1, \quad \vec{\mathrm{v}}_2, \quad \vec{\mathrm{v}}_3, \quad \ldots$$

History of Fourier's Model

The subject of **eigenanalysis** was popularized by J. B. Fourier in his 1822 publication on the theory of heat, *Théorie analytique de la chaleur*. His ideas can be summarized as follows for the $n \times n$ matrix equation $\vec{y} = A\vec{x}$.

The vector $\vec{\mathbf{y}} = A\vec{\mathbf{x}}$ is obtained from eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and eigenvectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \ldots, \vec{\mathbf{v}}_n$ by replacing the eigenvectors by their scaled versions $\lambda_1 \vec{\mathbf{v}}_1, \lambda_2 \vec{\mathbf{v}}_2, \ldots, \lambda_n \vec{\mathbf{v}}_n$:

$$ec{\mathbf{x}} = c_1 ec{\mathbf{v}}_1 + c_2 ec{\mathbf{v}}_2 + \cdots + c_n ec{\mathbf{v}}_n$$
 implies $ec{\mathbf{y}} = x_1 \lambda_1 ec{\mathbf{v}}_1 + x_2 \lambda_2 ec{\mathbf{v}}_2 + \cdots + c_n \lambda_n ec{\mathbf{v}}_n$.

Determining Equations

The eigenvalues and eigenvectors are determined by homogeneous matrix–vector equations. In Fourier's model

$$A(c_1 ec{ ext{v}}_1 + c_2 ec{ ext{v}}_2 + c_3 ec{ ext{v}}_3) = c_1 \lambda_1 ec{ ext{v}}_1 + c_2 \lambda_2 ec{ ext{v}}_2 + c_3 \lambda_3 ec{ ext{v}}_3$$

choose $c_1=1, c_2=c_3=0$. The equation reduces to $A\vec{\mathbf{v}}_1=\lambda_1\vec{\mathbf{v}}_1$. Similarly, taking $c_1=c_2=0, c_2=1$ implies $A\vec{\mathbf{v}}_2=\lambda_2\vec{\mathbf{v}}_2$. Finally, taking $c_1=c_2=0, c_3=1$ implies $A\vec{\mathbf{v}}_3=\lambda_3\vec{\mathbf{v}}_3$. This proves the following fundamental result.

Theorem 1 (Determining Equations in Fourier's Model)

Assume Fourier's model holds. Then the eigenvalues and eigenvectors are determined by the three equations

$$A ec{ ext{v}}_1 = \lambda_1 ec{ ext{v}}_1, \ A ec{ ext{v}}_2 = \lambda_2 ec{ ext{v}}_2, \ A ec{ ext{v}}_3 = \lambda_3 ec{ ext{v}}_3.$$

Determining Equations and Linear Algebra

The three relations of the theorem can be distilled into one homogeneous matrix–vector equation

$$A\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$$
.

Write it as $A\vec{x} - \lambda \vec{x} = \vec{0}$, then replace $\lambda \vec{x}$ by $\lambda I\vec{x}$ to obtain the standard form^a

$$(A - \lambda I)\vec{\mathrm{v}} = \vec{0}, \quad \vec{\mathrm{v}} \neq \vec{0}.$$

Let $B = A - \lambda I$. The equation $B\vec{v} = \vec{0}$ has a nonzero solution \vec{v} if and only if there are infinitely many solutions. Because the matrix is square, infinitely many solutions occurs if and only if $\mathbf{rref}(B)$ has a row of zeros. Determinant theory gives a more concise statement: $\det(B) = 0$ if and only if $B\vec{v} = \vec{0}$ has infinitely many solutions. This proves the following result.

^aIdentity I is required to factor out the matrix $A - \lambda I$. It is wrong to factor out $A - \lambda$, because A is 3×3 and λ is 1×1 , incompatible sizes for matrix addition.

College Algebra and Eigenanalysis

Theorem 2 (Characteristic Equation)

If Fourier's model holds, then the eigenvalues λ_1 , λ_2 , λ_3 are roots λ of the polynomial equation

$$\det(A - \lambda I) = 0.$$

The equation $\det(A - \lambda I) = 0$ is called the **characteristic equation**. The **characteristic polynomial** is the polynomial on the left, $\det(A - \lambda I)$, normally obtained by cofactor expansion or the triangular rule.

Eigenvectors and Toolkit Sequences

Eigenpairs of A are found using the linear algebra toolkit of swap, combo, multiply.

Theorem 3 (Finding Eigenvectors of A)

For each root λ of the characteristic equation, write the toolkit sequence for $B = A - \lambda I$, ending with $\mathbf{rref}(B)$ Solve for the general solution $\vec{\mathbf{v}}$ of the homogeneous equation $B\vec{\mathbf{v}} = \vec{\mathbf{0}}$. Solution $\vec{\mathbf{v}}$ uses invented symbols t_1, t_2, \ldots The vector basis answers $\partial_{t_1}\vec{\mathbf{v}}$, $\partial_{t_2}\vec{\mathbf{v}}$, ... are independent **eigenvectors** of A paired to eigenvalue λ . These vectors are known in linear algebra as *Strang's Special Solutions*.

Proof: The equation $A\vec{v} = \lambda \vec{v}$ is equivalent to $B\vec{v} = \vec{0}$. Because $\det(B) = 0$, then this system has infinitely many solutions, which implies the toolkit sequence starting at B ends with $\operatorname{rref}(B)$ having at least one row of zeros. The general solution then has one or more free variables which are assigned invented symbols t_1, t_2, \ldots , and then the vector basis is obtained by from the corresponding list of partial derivatives. Each basis element is a nonzero solution of $A\vec{v} = \lambda \vec{v}$. By construction, the basis elements (eigenvectors for λ) are collectively independent. The proof is complete.

Eigenpairs of a Matrix

Definition 1 (Eigenpair)

An **eigenpair** is an eigenvalue λ together with a matching eigenvector $\vec{\mathbf{v}} \neq \vec{\mathbf{0}}$ satisfying the equation $A\vec{\mathbf{v}} = \lambda\vec{\mathbf{v}}$. The pairing implies that scale factor λ is applied to direction $\vec{\mathbf{v}}$.

An applied view of an eigenpair is a coordinate axis $\vec{\mathbf{v}}$ and a unit system along this axis. The action of the matrix \boldsymbol{A} is to move $\boldsymbol{\lambda}$ units along this axis.

A 3×3 matrix A for which Fourier's model holds has eigenvalues λ_1 , λ_2 , λ_3 and corresponding eigenvectors $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$. The **eigenpairs** of A are

$$\left(\lambda_{1},ec{\mathrm{v}}_{1}
ight),\left(\lambda_{2},ec{\mathrm{v}}_{2}
ight),\left(\lambda_{3},ec{\mathrm{v}}_{3}
ight)$$
 .

Eigenvectors are Independent

Theorem 4 (Independence of Eigenvectors)

If (λ_1, \vec{v}_1) and (λ_2, \vec{v}_2) are two eigenpairs of A and $\lambda_1 \neq \lambda_2$, then \vec{v}_1 , \vec{v}_2 are independent.

More generally, if $(\lambda_1, \vec{\mathbf{v}}_1), \ldots, (\lambda_k, \vec{\mathbf{v}}_k)$ are eigenpairs of A corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then $\vec{\mathbf{v}}_1, \ldots, \vec{\mathbf{v}}_k$ are independent.

Theorem 5 (Distinct Eigenvalues)

If an $n \times n$ matrix A has n distinct eigenvalues, then its eigenpairs $(\lambda_1, \vec{\mathbf{v}}_1)$, ..., $(\lambda_n, \vec{\mathbf{v}}_n)$ produce independent eigenvectors $\vec{\mathbf{v}}_1, \ldots, \vec{\mathbf{v}}_n$. Therefore, Fourier's model holds:

$$A\left(\sum_{i=1}^n c_i ec{\mathrm{v}}_i
ight) = \sum_{i=1}^n c_i (\lambda_i ec{\mathrm{v}}_i).$$