What's Eigenanalysis?

Matrix eigenanalysis is a computational theory for the matrix equation $\mathbf{y}=\boldsymbol{A} \mathbf{x}$. For exposition purposes, we assume \boldsymbol{A} is a $\mathbf{3} \times \mathbf{3}$ matrix. Fourier's Eigenanalysis Model

$$
\begin{align*}
\mathrm{x} & =c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} \text { implies } \\
\mathbf{y} & =A \mathbf{x} \tag{1}\\
& =c_{1} \boldsymbol{\lambda}_{1} \mathbf{v}_{1}+c_{2} \boldsymbol{\lambda}_{2} \mathbf{v}_{2}+c_{3} \boldsymbol{\lambda}_{3} \mathbf{v}_{3}
\end{align*}
$$

The scale factors $\boldsymbol{\lambda}_{\mathbf{1}}, \boldsymbol{\lambda}_{\mathbf{2}}, \boldsymbol{\lambda}_{\mathbf{3}}$ and independent vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ depend only on \boldsymbol{A}. Symbols $\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}, \boldsymbol{c}_{\mathbf{3}}$ stand for arbitrary numbers. This implies variable x exhausts all possible 3 -vectors in \boldsymbol{R}^{3}.

Fourier's model is a replacement process

$$
A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+c_{3} \lambda_{3} \mathbf{v}_{3}
$$

To compute $A \mathbf{x}$ from $\mathbf{x}=c_{1} \mathbf{v}_{\mathbf{1}}+\boldsymbol{c}_{2} \mathbf{v}_{\mathbf{2}}+\boldsymbol{c}_{3} \mathbf{v}_{\mathbf{3}}$, replace each vector \mathbf{v}_{i} by its scaled version $\boldsymbol{\lambda}_{i} \mathbf{v}_{\boldsymbol{i}}$.

Fourier's model is said to hold provided there exist scale factors and independent vectors satisfying (1). Fourier's model is known to fail for certain matrices \boldsymbol{A}.

Powers and Fourier's Model

Equation (1) applies to compute powers \boldsymbol{A}^{n} of a matrix \boldsymbol{A} using only the basic vector space toolkit. To illustrate, only the vector toolkit for \boldsymbol{R}^{3} is used in computing

$$
A^{5} \mathrm{x}=x_{1} \lambda_{1}^{5} \mathbf{v}_{1}+x_{2} \lambda_{2}^{5} \mathbf{v}_{2}+x_{3} \lambda_{3}^{5} \mathbf{v}_{3}
$$

This calculation does not depend upon finding previous powers $\boldsymbol{A}^{2}, \boldsymbol{A}^{3}, \boldsymbol{A}^{4}$ as would be the case by using matrix multiply.

Differential Equations and Fourier's Model

Systems of differential equations can be solved using Fourier's model, giving a compact and elegant formula for the general solution. An example:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+3 x_{2} \\
& x_{2}^{\prime}= \\
& x_{3}^{\prime}= \\
& 2 x_{2}-x_{3} \\
&
\end{aligned}
$$

The general solution is given by the formula [Fourier's theorem, proved later]

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=c_{1} e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+c_{3} e^{-5 t}\left(\begin{array}{r}
1 \\
-2 \\
-14
\end{array}\right)
$$

which is related to Fourier's model by the symbolic formula

$$
\mathrm{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{v}_{3}
$$

Fourier's model illustrated

Let

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
1 & 3 & 0 \\
0 & 2 & -1 \\
0 & 0 & -5
\end{array}\right) \\
& \lambda_{1}=1, \\
& \mathrm{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathrm{v}_{2}=2,\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right), \quad \mathrm{v}_{3}=\left(\begin{array}{r}
1 \\
-2 \\
-14
\end{array}\right) .
\end{aligned}
$$

Then Fourier's model holds (details later) and

$$
\begin{aligned}
\mathrm{x} & =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{r}
1 \\
-2 \\
-14
\end{array}\right) \quad \text { implies } \\
A \mathrm{x} & =c_{1}(1)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}(2)\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+c_{3}(-5)\left(\begin{array}{r}
1 \\
-2 \\
-14
\end{array}\right)
\end{aligned}
$$

Eigenanalysis might be called the method of simplifying coordinates. The nomenclature is justified, because Fourier's model computes $\mathbf{y}=\boldsymbol{A x}$ by scaling independent vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$, which is a triad or coordinate system.

What is Eigenanalysis?

The subject of eigenanalysis discovers a coordinate system and scale factors such that Fourier's model holds. Fourier's model simplifies the matrix equation $\mathbf{y}=$ Ax, through the formula

$$
A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+c_{3} \lambda_{3} \mathbf{v}_{3}
$$

What's an Eigenvalue?

It is a scale factor. An eigenvalue is also called a proper value or a hidden value. Symbols $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3}$ used in Fourier's model are eigenvalues.

What's an Eigenvector?

Symbols $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ in Fourier's model are called eigenvectors, or proper vectors or hidden vectors. They are assumed independent.

The eigenvectors of a model are independent directions of application for the scale factors (eigenvalues).

A Key Example

Let x in R^{3} be a data set variable with coordinates x_{1}, x_{2}, x_{3} recorded respectively in units of meters, millimeters and centimeters. We consider the problem of conversion of the mixed-unit x-data into proper MKS units (meters-kilogram-second) \mathbf{y}-data via the equations

$$
\begin{align*}
& y_{1}=x_{1} \\
& y_{2}=0.001 x_{2} \tag{2}\\
& y_{3}=0.01 x_{3}
\end{align*}
$$

Equations (2) are a model for changing units. Scaling factors $\lambda_{1}=1, \lambda_{2}=0.001, \lambda_{3}=0.01$ are the eigenvalues of the model. To summarize:

The eigenvalues of a model are scale factors, normally represented by symbols $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3}, \ldots$

Data Conversion Example - Continued

Problem (2) can be represented as $\mathbf{y}=\boldsymbol{A} \mathbf{x}$, where the diagonal matrix \boldsymbol{A} is given by

$$
A=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad \lambda_{1}=1, \quad \lambda_{2}=\frac{1}{1000}, \quad \lambda_{3}=\frac{1}{100}
$$

Fourier's model for this matrix \boldsymbol{A} is

$$
A\left(c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)=c_{1} \lambda_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2} \lambda_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{3} \lambda_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

1 Example (Computing 3×3 Eigenpairs)

Find all eigenpairs of the 3×3 matrix $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$.

College Algebra

The eigenvalues are $\lambda_{1}=1+2 i, \lambda_{2}=1-2 i, \lambda_{3}=3$. Details:

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I) \\
& =\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
-2 & 1-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right| \\
& =\left((1-\lambda)^{2}+4\right)(3-\lambda)
\end{aligned}
$$

Characteristic equation.
Subtract $\boldsymbol{\lambda}$ from the diagonal.

Cofactor rule and Sarrus' rule.
Root $\boldsymbol{\lambda}=3$ is found from the factored form above. The roots $\boldsymbol{\lambda}=1 \pm 2 i$ are found from the quadratic formula after expanding $(1-\lambda)^{2}+4=0$. Alternatively, take roots across $(\lambda-1)^{2}=-4$.

Linear Algebra

The eigenpairs are

$$
\left(1+2 i,\left(\begin{array}{r}
-i \\
1 \\
0
\end{array}\right)\right),\left(1-2 i,\left(\begin{array}{c}
i \\
1 \\
0
\end{array}\right)\right),\left(3,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)
$$

Details appear below.

Eigenvector v_{1} for $\boldsymbol{\lambda}_{1}=1+2 i$

$$
\begin{array}{rlrl}
B & =A-\lambda_{1} I & \\
& =\left(\begin{array}{ccc}
1-\lambda_{1} & 2 & 0 \\
-2 & 1-\lambda_{1} & 0 \\
0 & 0 & 3-\lambda_{1}
\end{array}\right) & \\
& =\left(\begin{array}{rrr}
-2 i & 2 & 0 \\
-2 & -2 i & 0 \\
0 & 0 & 2-2 i
\end{array}\right) & \\
& \approx\left(\begin{array}{rrr}
i & -1 & 0 \\
1 & i & 0 \\
0 & 0 & 1
\end{array}\right) & & \\
& \approx\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & i & 0 \\
0 & 0 & 1
\end{array}\right) & & \text { Multiply rule. } \\
& \approx\left(\begin{array}{lll}
1 & i & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & & \text { Sombination, factor }=-i . \\
& =\operatorname{rref}\left(A-\lambda_{1} I\right) & & \text { Reduced echelon form. }
\end{array}
$$

The partial derivative $\partial_{t_{1}} \mathrm{v}$ of the general solution $x=-i t_{1}, y=t_{1}, z=0$ is eigenvector

$$
\mathrm{v}_{1}=\left(\begin{array}{r}
-i \\
1 \\
0
\end{array}\right)
$$

Eigenvector v_{2} for $\lambda_{2}=1-2 i$
The problem $\left(A-\lambda_{2} I\right) \mathrm{v}_{2}=0$ has solution $\mathrm{v}_{2}=\overline{\mathrm{v}_{1}}$.
To see why, take conjugates across the equation to give $\left(\bar{A}-\overline{\lambda_{2}} I\right) \overline{v_{2}}=0$. Then $\bar{A}=A$ (A is real) and $\lambda_{1}=\overline{\lambda_{2}}$ gives $\left(A-\lambda_{1} I\right) \overline{\mathrm{v}_{2}}=0$. Then $\overline{\mathrm{v}_{2}}=\mathrm{v}_{1}$.
Finally,

$$
\mathrm{v}_{2}=\overline{\overline{\mathrm{v}}}_{2}=\overline{\mathrm{v}}_{1}=\left(\begin{array}{c}
i \\
1 \\
0
\end{array}\right) .
$$

Eigenvector $\boldsymbol{v}_{\mathbf{3}}$ for $\boldsymbol{\lambda}_{\mathbf{3}}=\mathbf{3}$

$$
\begin{aligned}
A-\lambda_{3} I & =\left(\begin{array}{ccc}
1-\lambda_{3} & 2 & 0 \\
-2 & 1-\lambda_{3} & 0 \\
0 & 0 & 3-\lambda_{3}
\end{array}\right) \\
& =\left(\begin{array}{rrr}
-2 & 2 & 0 \\
-2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \approx\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \approx\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =\operatorname{rref}\left(A-\lambda_{3} I\right)
\end{aligned}
$$

Multiply rule.

Combination and multiply.

Reduced echelon form.

The partial derivative $\boldsymbol{\partial}_{t_{1}} \mathrm{v}$ of the general solution $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}, \boldsymbol{z}=\boldsymbol{t}_{1}$ is eigenvector

$$
\mathrm{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

