
What’s Eigenanalysis?
Matrix eigenanalysis is a computational theory for the matrix equation y = Ax. For
exposition purposes, we assume A is a 3 × 3 matrix.
Fourier’s Eigenanalysis Model

x = c1v1 + c2v2 + c3v3 implies
y = Ax

= c1λ1v1 + c2λ2v2 + c3λ3v3.
(1)

The scale factors λ1, λ2, λ3 and independent vectors v1, v2, v3 depend only on A. Symbols c1, c2, c3 stand for
arbitrary numbers. This implies variable x exhausts all possible 3-vectors in R3.



Fourier’s model is a replacement process

A (c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3.

To compute Ax from x = c1v1 + c2v2 + c3v3, replace each vector vi by
its scaled version λivi.

Fourier’s model is said to hold provided there exist scale factors and independent vectors satisfying (1). Fourier’s
model is known to fail for certain matrices A.



Powers and Fourier’s Model
Equation (1) applies to compute powers An of a matrix A using only the basic vector
space toolkit. To illustrate, only the vector toolkit for R3 is used in computing

A5x = x1λ
5
1v1 + x2λ

5
2v2 + x3λ

5
3v3.

This calculation does not depend upon finding previous powers A2, A3, A4 as would be
the case by using matrix multiply.



Differential Equations and Fourier’s Model
Systems of differential equations can be solved using Fourier’s model, giving a compact
and elegant formula for the general solution. An example:

x′
1 = x1 + 3x2,

x′
2 = 2x2 − x3,

x′
3 = − 5x3.

The general solution is given by the formula [Fourier’s theorem, proved later] x1

x2

x3

 = c1e
t

 1
0
0

 + c2e
2t

 3
1
0

 + c3e
−5t

 1
−2

−14

 ,

which is related to Fourier’s model by the symbolic formula

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3.



Fourier’s model illustrated
Let

A =

 1 3 0
0 2 −1
0 0 −5


λ1 = 1, λ2 = 2, λ3 = −5,

v1 =

 1
0
0

 , v2 =

 3
1
0

 , v3 =

 1
−2

−14

 .

Then Fourier’s model holds (details later) and

x = c1

 1
0
0

 + c2

 3
1
0

 + c3

 1
−2

−14

 implies

Ax = c1(1)

 1
0
0

 + c2(2)

 3
1
0

 + c3(−5)

 1
−2

−14


Eigenanalysis might be called the method of simplifying coordinates. The nomenclature is justified, because
Fourier’s model computes y = Ax by scaling independent vectors v1, v2, v3, which is a triad or coordinate
system.



What is Eigenanalysis?

The subject of eigenanalysis discovers a coordinate system and scale factors such
that Fourier’s model holds. Fourier’s model simplifies the matrix equation y =
Ax, through the formula

A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3.



What’s an Eigenvalue?
It is a scale factor. An eigenvalue is also called a proper value or a hidden value. Symbols
λ1, λ2, λ3 used in Fourier’s model are eigenvalues.

What’s an Eigenvector?
Symbols v1, v2, v3 in Fourier’s model are called eigenvectors, or proper vectors or hidden
vectors. They are assumed independent.

The eigenvectors of a model are independent directions of application for the
scale factors (eigenvalues).



A Key Example
Let x in R3 be a data set variable with coordinates x1, x2, x3 recorded respectively in units of meters, millime-
ters and centimeters. We consider the problem of conversion of the mixed-unit x-data into proper MKS units
(meters-kilogram-second) y-data via the equations

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

(2)

Equations (2) are a model for changing units. Scaling factors λ1 = 1, λ2 = 0.001, λ3 = 0.01 are the
eigenvalues of the model. To summarize:

The eigenvalues of a model are scale factors, normally represented by symbols
λ1, λ2, λ3, . . . .



Data Conversion Example – Continued
Problem (2) can be represented as y = Ax, where the diagonal matrix A is given by

A =

 λ1 0 0
0 λ2 0
0 0 λ3

 , λ1 = 1, λ2 =
1

1000
, λ3 =

1

100
.

Fourier’s model for this matrix A is

A

c1

1
0
0

 + c2

0
1
0

 + c3

0
0
1

 = c1λ1

1
0
0

 + c2λ2

0
1
0

 + c3λ3

0
0
1





History of Fourier’s Model
The subject of eigenanalysis was popularized by J. B. Fourier in his 1822 publication on
the theory of heat, Théorie analytique de la chaleur. His ideas can be summarized as
follows for the n × n matrix equation y = Ax.

The vector y = Ax is obtained from eigenvalues λ1, λ2, . . . , λn

and eigenvectors v1, v2, . . . , vn by replacing the eigenvectors by their
scaled versions λ1v1, λ2v2, . . . , λnvn:

x = c1v1 + c2v2 + · · · + cnvn implies
y = x1λ1v1 + x2λ2v2 + · · · + cnλnvn.



Determining Equations
The eigenvalues and eigenvectors are determined by homogeneous matrix–vector equa-
tions. In Fourier’s model

A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3

choose c1 = 1, c2 = c3 = 0. The equation reduces to Av1 = λ1v1. Similarly, taking
c1 = c2 = 0, c2 = 1 implies Av2 = λ2v2. Finally, taking c1 = c2 = 0, c3 = 1
implies Av3 = λ3v3. This proves:

Theorem 1 (Determining Equations in Fourier’s Model)
Assume Fourier’s model holds. Then the eigenvalues and eigenvectors are deter-
mined by the three equations

Av1 = λ1v1,
Av2 = λ2v2,
Av3 = λ3v3.



Determining Equations – Continued
The three relations of the theorem can be distilled into one homogeneous matrix–vector
equation

Av = λv.

Write it as Ax − λx = 0, then replace λx by λIx to obtain the standard forma

(A − λI)v = 0, v 6= 0.

Let B = A−λI . The equation Bv = 0 has a nonzero solution v if and only if there are
infinitely many solutions. Because the matrix is square, infinitely many solutions occurs
if and only if rref(B) has a row of zeros. Determinant theory gives a more concise
statement: det(B) = 0 if and only if Bv = 0 has infinitely many solutions. This
proves:

Theorem 2 (Characteristic Equation)
If Fourier’s model holds, then the eigenvalues λ1, λ2, λ3 are roots λ of the poly-
nomial equation

det(A − λI) = 0.

The equation is called the characteristic equation. The characteristic polynomial is the
polynomial on the left, normally obtained by cofactor expansion or the triangular rule.

aIdentity I is required to factor out the matrix A − λI . It is wrong to factor out A − λ, because A is 3 × 3 and λ
is 1 × 1, incompatible sizes for matrix addition.



Theorem 3 (Finding Eigenvectors of A)
For each root λ of the characteristic equation, write the frame sequence for B =
A − λI with last frame rref(B), followed by solving for the general solution v of
the homogeneous equation Bv = 0. Solution v uses invented parameter names
t1, t2, . . . . The vector basis answers ∂t1v, ∂t2v, . . . are independent eigenvectors
of A paired to eigenvalue λ.
Proof: The equation Av = λv is equivalent to Bv = 0. Because det(B) = 0, then this system has infinitely
many solutions, which implies the frame sequence starting at B ends with rref(B) having at least one row of
zeros. The general solution then has one or more free variables which are assigned invented symbols t1, t2, . . . ,
and then the vector basis is obtained by from the corresponding list of partial derivatives. Each basis element
is a nonzero solution of Av = λv. By construction, the basis elements (eigenvectors for λ) are collectively
independent. The proof is complete.



Definition 1 (Eigenpair)
An eigenpair is an eigenvalue λ together with a matching eigenvector v 6= 0 satisfying
the equation Av = λv. The pairing implies that scale factor λ is applied to direction v.

A 3 × 3 matrix A for which Fourier’s model holds has eigenvalues λ1, λ2, λ3 and
corresponding eigenvectors v1, v2, v3. The eigenpairs of A are

(λ1, v1) , (λ2, v2) , (λ3, v3) .

Theorem 4 (Independence of Eigenvectors)
If (λ1, v1) and (λ2, v2) are two eigenpairs of A and λ1 6= λ2, then v1, v2 are
independent.
More generally, if (λ1, v1), . . . , (λk, vk) are eigenpairs of A corresponding to
distinct eigenvalues λ!, . . . , λk, then v1, . . . , vk are independent.



The Matrix Eigenanalysis Method
The preceding discussion of data conversion now gives way to abstract definitions which
distill the essential theory of eigenanalysis. All of this is algebra, devoid of motivation or
application.

Definition 2 (Eigenpair)
A pair (λ, v), where v 6= 0 is a vector and λ is a complex number, is called an eigenpair
of the n × n matrix A provided

Av = λv (v 6= 0 required).(3)

The nonzero requirement in (3) results from seeking directions for a coordinate system: the
zero vector is not a direction. Any vector v 6= 0 that satisfies (3) is called an eigenvector
for λ and the value λ is called an eigenvalue of the square matrix A.



Eigenanalysis Algorithm

Theorem 5 (Algebraic Eigenanalysis)
Eigenpairs (λ, v) of an n × n matrix A are found by this two-step algorithm:

Step 1 (College Algebra). Solve for eigenvalues λ in the nth order poly-
nomial equation det(A − λI) = 0.
Step 2 (Linear Algebra). For a given root λ from Step 1, a corresponding
eigenvector v 6= 0 is found by applying the frame sequence methoda to the
homogeneous linear equation

(A − λI)v = 0.

The reported answer for v is routinely the list of partial derivatives ∂t1v,
∂t2v, . . . , where t1, t2, . . . are invented symbols assigned to the free vari-
ables.

The reader is asked to apply the algorithm to the identity matrix I ; then Step 1 gives n
duplicate answers λ = 1 and Step 2 gives n answers, the columns of the identity matrix
I .

a For Bv = 0, the frame sequence begins with B, instead of aug(B, 0). The sequence ends with rref(B). Then
the reduced echelon system is written, followed by assignment of free variables and display of the general solution v.



Proof of the Algebraic Eigneanalysis Theorem
The equation Av = λv is equivalent to (A−λI)v = 0, which is a set of homogeneous
equations, consistent always because of the solution v = 0.
Fix λ and define B = A − λI . We show that an eigenpair (λ, v) exists with v 6= 0
if and only if det(B) = 0, i.e., det(A − λI) = 0. There is a unique solution
v to the homogeneous equation Bv = 0 exactly when Cramer’s rule applies, in which
case v = 0 is the unique solution. All that Cramer’s rule requires is det(B) 6= 0.
Therefore, an eigenpair exists exactly when Cramer’s rule fails to apply, which is when the
determinant of coefficients is zero: det(B) = 0.
Eigenvectors for λ are found from the general solution to the system of equations Bv = 0
where B = A−λI . The rref method produces systematically a reduced echelon system
from which the general solution v is written, depending on invented symbols t1, . . . , tk.
Since there is never a unique solution, at least one free variable exists. In particular, the last
frame rref(B) of the sequence has a row of zeros, which is a useful sanity test.
The basis of eigenvectors for λ is obtained from the general solution v, which is a linear
combination involving the parameters t1, . . . , tk. The basis elements are reported as the
list of partial derivatives ∂t1v, . . . , ∂tk

v.



1 Example (Computing 3 × 3 Eigenpairs)

Find all eigenpairs of the 3 × 3 matrix A =

 1 2 0
−2 1 0

0 0 3

.

College Algebra
The eigenvalues are λ1 = 1 + 2i, λ2 = 1 − 2i, λ3 = 3. Details:

0 = det(A − λI) Characteristic equation.

=

∣∣∣∣∣∣
1 − λ 2 0
−2 1 − λ 0
0 0 3 − λ

∣∣∣∣∣∣ Subtract λ from the diagonal.

= ((1 − λ)2 + 4)(3 − λ) Cofactor rule and Sarrus’ rule.

Root λ = 3 is found from the factored form above. The roots λ = 1 ± 2i are found
from the quadratic formula after expanding (1 − λ)2 + 4 = 0. Alternatively, take roots
across (λ − 1)2 = −4.



Linear Algebra
The eigenpairs are1 + 2i,

 −i
1
0

 ,

1 − 2i,

 i
1
0

 ,

3,

 0
0
1

 .

Details appear below.



Eigenvector v1 for λ1 = 1 + 2i

B = A − λ1I

=

 1 − λ1 2 0
−2 1 − λ1 0
0 0 3 − λ1


=

 −2i 2 0
−2 −2i 0

0 0 2 − 2i


≈

 i −1 0
1 i 0
0 0 1

 Multiply rule.

≈

 0 0 0
1 i 0
0 0 1

 Combination, factor=−i.

≈

 1 i 0
0 0 1
0 0 0

 Swap rule.

= rref(A − λ1I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = −it1, y = t1, z = 0 is eigenvector

v1 =

 −i
1
0

 .



Eigenvector v2 for λ2 = 1 − 2i

The problem (A − λ2I)v2 = 0 has solution v2 = v1.

To see why, take conjugates across the equation to give (A−λ2I)v2 = 0. Then A = A
(A is real) and λ1 = λ2 gives (A − λ1I)v2 = 0. Then v2 = v1.

Finally,

v2 = v2 = v1 =

 i
1
0

 .



Eigenvector v3 for λ3 = 3

A − λ3I =

 1 − λ3 2 0
−2 1 − λ3 0
0 0 3 − λ3


=

 −2 2 0
−2 −2 0

0 0 0


≈

 1 −1 0
1 1 0
0 0 0

 Multiply rule.

≈

 1 0 0
0 1 0
0 0 0

 Combination and multiply.

= rref(A − λ3I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = 0, z = t1 is eigenvector

v3 =

 0
0
1

 .


