Linear Dynamical Systems Matrix Exponential: Putzer Formula for e^{At} Variation of Parameters and Undetermined Coefficients

- The 2 imes 2 Matrix Exponential e^{At}
 - Putzer Matrix Exponential Formula for 2×2 Matrices
 - How to Remember Putzer's 2×2 Formula
- Variation of Parameters for Linear Systems
- Undetermined Coefficients for Linear Systems

The 2 imes 2 Matrix Exponential e^{At}

Definition. The matrix exponential e^{At} is the $n \times n$ matrix $\Phi(t)$ defined by (1) $\frac{d}{dt}\Phi = A\Phi$, (2) $\Phi(0) = I$. Alternatively, Φ is the augmented matrix of solution vectors for the n problems $\frac{d}{dt}\vec{v}_k = A\vec{v}_k, \vec{v}_k(0) = \text{column } k \text{ of } I, 1 \leq k \leq n$.

Example. A 2×2 matrix A has exponential matrix e^{At} with columns equal to the solutions of the two problems

$$\left\{ egin{array}{ll} rac{d}{dt}ec{ec{\mathbf{v}}}_1(t) &=& Aec{ec{\mathbf{v}}}_1(t), \ ec{ec{\mathbf{v}}}_1(0) &=& \left(egin{array}{ll} 1\ 0\end{array}
ight) &=& \left(egin{array}{ll} rac{d}{dt}ec{ec{\mathbf{v}}}_2(t) &=& Aec{ec{\mathbf{v}}}_2(t), \ ec{ec{\mathbf{v}}}_2(0) &=& \left(egin{array}{ll} 0\ 1\end{array}
ight) & ec{ec{\mathbf{v}}}_2(0) &=& \left(egin{array}{ll} 0\ 1\end{array}
ight) \end{array}
ight\}$$

Briefly, the 2 imes 2 matrix $\Phi(t)=e^{At}$ satisfies the two conditions

$$(1) \quad rac{d}{dt} \Phi(t) = A \Phi(t), \quad (2) \quad \Phi(0) = \left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight).$$

Putzer Matrix Exponential Formula for 2 imes 2 Matrices

$$e^{At} = e^{\lambda_1 t}I + rac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}(A - \lambda_1 I)$$
 $A ext{ is } 2 imes 2, \lambda_1
eq \lambda_2 ext{ real.}$
 $e^{At} = e^{\lambda_1 t}I + te^{\lambda_1 t}(A - \lambda_1 I)$ $A ext{ is } 2 imes 2, \lambda_1 = \lambda_2 ext{ real.}$
 $e^{At} = e^{at} \cos bt I + rac{e^{at} \sin bt}{b}(A - aI)$ $A ext{ is } 2 imes 2, \lambda_1 = \overline{\lambda}_2 = a + ib,$
 $b > 0.$

How to Remember Putzer's 2×2 Formula

The expressions

(1)
$$e^{At} = r_1(t)I + r_2(t)(A - \lambda_1 I),$$
$$r_1(t) = e^{\lambda_1 t}, \quad r_2(t) = \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}$$

are enough to generate all three formulas. Fraction r_2 is the $d/d\lambda$ -Newton difference quotient for r_1 . Then r_2 limits as $\lambda_2 \rightarrow \lambda_1$ to the $d/d\lambda$ -derivative $te^{\lambda_1 t}$. Therefore, the formula includes the case $\lambda_1 = \lambda_2$ by limiting. If $\lambda_1 = \overline{\lambda}_2 = a + ib$ with b > 0, then the fraction r_2 is already real, because it has for $z = e^{\lambda_1 t}$ and $w = \lambda_1$ the form

$$r_2(t)=rac{z-\overline{z}}{w-\overline{w}}=rac{\sin bt}{b}$$

Taking real parts of expression (1) gives the complex case formula.

Variation of Parameters

Theorem 1 (Variation of Parameters for Linear Systems)

Let A be a constant $n \times n$ matrix and $\vec{F}(t)$ a continuous function near $t = t_0$. The unique solution $\vec{x}(t)$ of the matrix initial value problem

$$ec{\mathrm{x}}'(t) = Aec{\mathrm{x}}(t) + ec{\mathrm{F}}(t), \hspace{1em} ec{\mathrm{x}}(t_0) = ec{\mathrm{x}}_0,$$

is given by the variation of parameters formula

(2)
$$\vec{\mathbf{x}}(t) = e^{At} \vec{\mathbf{x}}_0 + e^{At} \int_{t_0}^t e^{-rA} \vec{\mathbf{F}}(r) dr.$$

Undetermined Coefficients

Theorem 2 (Polynomial Solutions)

Let f(t) be a polynomial of degree k. Assume A is an $n \times n$ constant invertible matrix. Then $\vec{u}' = A\vec{u} + f(t)\vec{c}$ has a polynomial solution $\vec{u}(t) = \sum_{j=0}^{k} \vec{c}_{j} \frac{t^{j}}{j!}$ of degree k with vector coefficients $\{\vec{c}_{j}\}$ given by the relations

$$ec{\mathrm{c}}_j = -\sum_{i=j}^k f^{(i)}(0) A^{j-i-1} ec{\mathrm{c}}, \hspace{0.3cm} 0 \leq j \leq k.$$

Changes from *n*th Order Undetermined Coefficients. The *n*th order theory using Rule I and Rule II is replaced by

Systems Rule for Undetermined Coefficients. Assume $\frac{d}{dt}\vec{\mathbf{u}} = A\vec{\mathbf{u}} + \vec{F}(t)$. Extract all Euler atoms from $\vec{F}, \vec{F'}, \ldots$ Don't replace atoms by groups (Rule II). Instead, extend each existing group (Rule I) by adding m-1 higher power terms x^k (base atom) to the group, where m is the multiplicity of the root for the base atom in the characteristic equation |A - rI| = 0. The trial solution is a linear combination of the final atom list with vector coefficients.