Linear Dynamical Systems
 Matrix Exponential: Putzer Formula for $e^{A t}$ Variation of Parameters and Undetermined Coefficients

- The 2×2 Matrix Exponential $e^{A t}$
- Putzer Matrix Exponential Formula for 2×2 Matrices
- How to Remember Putzer's 2×2 Formula
- Variation of Parameters for Linear Systems
- Undetermined Coefficients for Linear Systems

The 2×2 Matrix Exponential $e^{A t}$
Definition. The matrix exponential $e^{A t}$ is the $n \times n$ matrix $\Phi(t)$ defined by
(1) $\frac{d}{d t} \Phi=A \Phi$,
(2) $\Phi(0)=I$.

Alternatively, $\boldsymbol{\Phi}$ is the augmented matrix of solution vectors for the \boldsymbol{n} problems $\frac{d}{d t} \overrightarrow{\boldsymbol{v}}_{\boldsymbol{k}}=$ $\boldsymbol{A} \overrightarrow{\boldsymbol{v}}_{\boldsymbol{k}}, \overrightarrow{\boldsymbol{v}}_{\boldsymbol{k}}(\mathbf{0})=$ column \boldsymbol{k} of $\boldsymbol{I}, \mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}$.

Example. A 2×2 matrix A has exponential matrix $e^{A t}$ with columns equal to the solutions of the two problems

$$
\left\{\begin{array} { l }
{ \frac { d } { d t } \vec { \vec { v } } _ { 1 } (t) = A \vec { \vec { v } } _ { 1 } (t) , } \\
{ \vec { \mathbf { v } } _ { 1 } (0) = (\begin{array} { c }
{ 1 } \\
{ 0 }
\end{array}) }
\end{array} \quad \left\{\begin{array}{l}
\frac{d}{d t} \overrightarrow{\vec{v}}_{2}(t)=A \overrightarrow{\vec{v}}_{2}(t) \\
\overrightarrow{\vec{v}}_{2}(0)=\binom{0}{1}
\end{array}\right.\right.
$$

Briefly, the 2×2 matrix $\Phi(t)=e^{A t}$ satisfies the two conditions

$$
\text { (1) } \quad \frac{d}{d t} \Phi(t)=A \Phi(t), \quad(2) \quad \Phi(0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Putzer Matrix Exponential Formula for 2×2 Matrices

$$
\begin{array}{ll}
e^{A t}=e^{\lambda_{1} t} I+\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{1} I\right) & A \text { is } 2 \times 2, \lambda_{1} \neq \lambda_{2} \text { real. } \\
e^{A t}=e^{\lambda_{1} t} I+t e^{\lambda_{1} t}\left(A-\lambda_{1} I\right) & A \text { is } 2 \times 2, \lambda_{1}=\lambda_{2} \text { real. } \\
e^{A t}=e^{a t} \cos b t I+\frac{e^{a t} \sin b t}{b}(A-a I) & \begin{array}{l}
A \text { is } 2 \times 2, \lambda_{1}=\bar{\lambda}_{2}=a+i b, \\
b>0 .
\end{array}
\end{array}
$$

How to Remember Putzer's 2×2 Formula

The expressions

$$
\begin{align*}
& e^{A t}=r_{1}(t) I+r_{2}(t)\left(A-\lambda_{1} I\right) \\
& r_{1}(t)=e^{\lambda_{1} t}, \quad r_{2}(t)=\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} \tag{1}
\end{align*}
$$

are enough to generate all three formulas. Fraction $\boldsymbol{r}_{\mathbf{2}}$ is the $\boldsymbol{d} / \boldsymbol{d} \boldsymbol{\lambda}$-Newton difference quotient for \boldsymbol{r}_{1}. Then \boldsymbol{r}_{2} limits as $\boldsymbol{\lambda}_{2} \rightarrow \boldsymbol{\lambda}_{1}$ to the $\boldsymbol{d} / \boldsymbol{d} \boldsymbol{\lambda}$-derivative $\boldsymbol{t} \boldsymbol{e}^{\boldsymbol{\lambda}_{1} t}$. Therefore, the formula includes the case $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{2}$ by limiting. If $\boldsymbol{\lambda}_{1}=\overline{\boldsymbol{\lambda}}_{2}=a+i b$ with $b>0$, then the fraction r_{2} is already real, because it has for $\boldsymbol{z}=e^{\lambda_{1} t}$ and $\boldsymbol{w}=\boldsymbol{\lambda}_{1}$ the form

$$
r_{2}(t)=\frac{z-\bar{z}}{w-\bar{w}}=\frac{\sin b t}{b}
$$

Taking real parts of expression (1) gives the complex case formula.

Variation of Parameters

\qquad
Theorem 1 (Variation of Parameters for Linear Systems)
Let \boldsymbol{A} be a constant $\boldsymbol{n} \times \boldsymbol{n}$ matrix and $\overrightarrow{\mathrm{F}}(\boldsymbol{t})$ a continuous function near $\boldsymbol{t}=\boldsymbol{t}_{0}$. The unique solution $\overrightarrow{\mathrm{x}}(t)$ of the matrix initial value problem

$$
\overrightarrow{\mathrm{x}}^{\prime}(t)=A \overrightarrow{\mathrm{x}}(t)+\overrightarrow{\mathrm{F}}(t), \quad \overrightarrow{\mathrm{x}}\left(t_{0}\right)=\overrightarrow{\mathrm{x}}_{0},
$$

is given by the variation of parameters formula

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}(t)=e^{A t} \overrightarrow{\mathrm{x}}_{0}+e^{A t} \int_{t_{0}}^{t} e^{-r A} \overrightarrow{\mathrm{~F}}(r) d r \tag{2}
\end{equation*}
$$

Undetermined Coefficients

Theorem 2 (Polynomial Solutions)

Let $\boldsymbol{f}(\boldsymbol{t})$ be a polynomial of degree \boldsymbol{k}. Assume \boldsymbol{A} is an $\boldsymbol{n} \times \boldsymbol{n}$ constant invertible matrix. Then $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}+\boldsymbol{f}(\boldsymbol{t}) \overrightarrow{\mathbf{c}}$ has a polynomial solution $\overrightarrow{\mathbf{u}}(\boldsymbol{t})=\sum_{j=0}^{k} \overrightarrow{\mathbf{c}}_{j} \frac{t^{j}}{j!}$ of degree \boldsymbol{k} with vector coefficients $\left\{\overrightarrow{\mathbf{c}}_{j}\right\}$ given by the relations

$$
\overrightarrow{\mathrm{c}}_{j}=-\sum_{i=j}^{k} f^{(i)}(0) A^{j-i-1} \overrightarrow{\mathbf{c}}, \quad 0 \leq j \leq k .
$$

Changes from \boldsymbol{n} th Order Undetermined Coefficients. The \boldsymbol{n} th order theory using Rule I and Rule II is replaced by

Systems Rule for Undetermined Coefficients. Assume $\frac{d}{d t} \overrightarrow{\overrightarrow{\mathbf{u}}}=\boldsymbol{A} \overrightarrow{\overrightarrow{\mathbf{u}}}+\overrightarrow{\boldsymbol{F}}(\boldsymbol{t})$. Extract all Euler atoms from $\overrightarrow{\boldsymbol{F}}, \overrightarrow{\boldsymbol{F}}^{\prime}, \ldots$ Don't replace atoms by groups (Rule II). Instead, extend each existing group (Rule I) by adding $\boldsymbol{m}-1$ higher power terms \boldsymbol{x}^{k} (base atom) to the group, where \boldsymbol{m} is the multiplicity of the root for the base atom in the characteristic equation $|\boldsymbol{A}-\boldsymbol{r I}|=0$. The trial solution is a linear combination of the final atom list with vector coefficients.

