
Systems of Differential Equations
The Eigenanalysis Method

• First Order 2× 2 Systems ~x′ = A~x

• First Order 3× 3 Systems ~x′ = A~x

• Second Order 3× 3 Systems ~x′′ = A~x

• Vector-Matrix Form of the Solution of ~x′ = A~x

• Four Methods for Solving a System ~x′ = A~x



The Eigenanalysis Method for First Order 2× 2 Systems
Suppose thatA is 2× 2 real and has eigenpairs

(λ1,~v1), (λ2,~v2),

with ~v1, ~v2 independent. The eigenvalues λ1, λ2 can be both real. Also, they can be a
complex conjugate pair λ1 = λ2 = a+ ib with b > 0.

Theorem 1 (Eigenanalysis Method)
The general solution of ~x′ = A~x is

~x(t) = c1e
λ1t~v1 + c2e

λ2t~v2.



Solving 2× 2 Systems~x′ = A~x with Complex Eigenvalues

If the eigenvalues are complex conjugates, then the real part ~w1 and the imaginary
part ~w2 of the solution eλ1t~v1 are independent solutions of the differential equation.
Then the general solution in real form is given by the relation

~x(t) = c1~w1(t) + c2~w2(t).



The Eigenanalysis Method for First Order 3× 3 Systems

Suppose thatA is 3× 3 real and has eigenpairs

(λ1,~v1), (λ2,~v2), (λ3,~v3),

with~v1,~v2,~v3 independent. The eigenvaluesλ1, λ2, λ3 can be all real. Also, there can be
one real eigenvalue λ3 and a complex conjugate pair of eigenvalues λ1 = λ2 = a+ ib
with b > 0.

Theorem 2 (Eigenanalysis Method)
The general solution of ~x′ = A~x with 3× 3 real A can be written as

~x(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.



Solving 3× 3 Systems~x′ = A~x with Complex Eigenvalues

If there are complex eigenvalues λ1 = λ2, then the real general solution is expressed in
terms of independent solutions

~w1 = Re(eλ1t~v1), ~w2 = Im(eλ1t~v1)

as the linear combination

~x(t) = c1~w1(t) + c2~w2(t) + c3e
λ3t~v3.



The Eigenanalysis Method for Second Order Systems

Theorem 3 (Second Order Systems)
Let A be real and 3× 3 with three negative eigenvalues λ1 = −ω2

1, λ2 = −ω2
2,

λ3 = −ω2
3. Let the eigenpairs of A be listed as

(λ1,~v1), (λ2,~v2), (λ3,~v3).

Then the general solution of the second order system ~x′′(t) = A~x(t) is

~x(t) =

(
a1 cosω1t+ b1

sinω1t

ω1

)
~v1

+

(
a2 cosω2t+ b2

sinω2t

ω2

)
~v2

+

(
a3 cosω3t+ b3

sinω3t

ω3

)
~v3



Vector-Matrix Form of the Solution of~x′ = A~x

The solution of~x′ = A~x in the 3× 3 case is written in vector-matrix form

~x(t) = aug(~v1,~v2,~v3)

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 c1c2
c3

 .
This formula is normally used when the eigenpairs are real.



Complex Eigenvalues for a 2× 2 System

When there is a complex conjugate pair of eigenvalues λ1 = λ2 = a + ib, b > 0,
then it is possible to extract a real solution ~x from the complex formula and report a real
solution. The work can be organized more efficiently using the matrix product

~x(t) = eat aug(Re(~v1), Im(~v1))

(
cos bt sin bt
− sin bt cos bt

)(
c1
c2

)
.



Complex Eigenvalues for a 3× 3 System

When there is a complex conjugate pair of eigenvalues λ1 = λ2 = a+ ib, b > 0, then
a real solution ~x can be extracted from the complex formula to report a real solution. The
work is organized using the matrix product

~x(t) = aug(Re(~v1), Im(~v1),~v3)

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

 c1c2
c3

 .



Four Methods for Solving a 2× 2 System ~u′ = A~u

1. First-order method. If A is diagonal, then use growth-decay methods. If A is trian-
gular, then use the linear integrating factor method.

2. Cayley-Hamilton-Ziebur method. IfA is not diagonal, and a12 6= 0, then u1(t) is
a linear combination of the atoms constructed from the roots r of det(A−rI) = 0.
Solution u2(t) is found from the system by solving for u2 in terms of u1 and u′1.

3. Eigenanalysis method. Assume A has eigenpairs (λ1,~v1), (λ2,~v2) with ~v1, ~v2

independent. Then ~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2.

4. Resolvent method. In Laplace notation, ~u(t) = L−1 ((sI −A)−1~u(0)). The
inverse of C = sI − A is found from the formula C−1 = adj(C)/ det(C).
Cramer’s Rule can replace the matrix inversion method.



Four Methods for Solving an n× n System ~u′ = A~u

1. First-order method. If A is diagonal, then use growth-decay methods. If A is trian-
gular, then use the linear integrating factor method.

2. Cayley-Hamilton-Ziebur method. The solution ~u(t) is a linear combination of the
atoms constructed from the roots r of det(A− rI) = 0,

~u(t) = (atom1)~d1 + · · ·+ (atomn)~dn.

To solve for the constant vectors ~dj, differentiate the formula n − 1 times, then use
Ak~u(t) = ~u(k+1)(t) and set t = 0, to obtain a system for ~d1, . . . , ~dn.

3. Eigenanalysis method. Assume A has eigenpairs (λ1,~v1), . . . , (λn,~vn) with ~v1,
. . . ,~vn independent. Then ~u(t) = c1e

λ1t~v1 + · · ·+ cne
λnt~vn.

4. Resolvent method. In Laplace notation, ~u(t) = L−1 ((sI −A)−1~u(0)). The
inverse of C = sI − A is found from the formula C−1 = adj(C)/ det(C).
Cramer’s Rule can replace the matrix inversion method.


