Systems of Differential Equations The Eigenanalysis Method

- First Order 2×2 Systems $\vec{\mathrm{x}}' = A\vec{\mathrm{x}}$
- First Order 3×3 Systems $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$
- Second Order 3×3 Systems $\vec{x}'' = A\vec{x}$
- Vector-Matrix Form of the Solution of $\vec{x}' = A\vec{x}$
- Four Methods for Solving a System $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$

The Eigenanalysis Method for First Order 2×2 Systems. Suppose that A is 2×2 real and has eigenpairs

 $(\lambda_1,ec{\mathrm{v}}_1), \quad (\lambda_2,ec{\mathrm{v}}_2),$

with \vec{v}_1 , \vec{v}_2 independent. The eigenvalues λ_1 , λ_2 can be both real. Also, they can be a complex conjugate pair $\lambda_1 = \overline{\lambda}_2 = a + ib$ with b > 0.

Theorem 1 (Eigenanalysis Method) The general solution of $\vec{x}' = A\vec{x}$ is

 $ec{\mathbf{x}}(t) = c_1 e^{\lambda_1 t} ec{\mathbf{v}}_1 + c_2 e^{\lambda_2 t} ec{\mathbf{v}}_2.$

Solving 2 imes 2 Systems $ec{\mathbf{x}}' = A ec{\mathbf{x}}$ with Complex Eigenvalues

If the eigenvalues are complex conjugates, then the real part \vec{w}_1 and the imaginary part \vec{w}_2 of the solution $e^{\lambda_1 t} \vec{v}_1$ are independent solutions of the differential equation. Then the general solution in *real form* is given by the relation

$$ec{\mathrm{x}}(t)=c_1ec{\mathrm{w}}_1(t)+c_2ec{\mathrm{w}}_2(t).$$

The Eigenanalysis Method for First Order 3×3 Systems

Suppose that A is 3×3 real and has eigenpairs

$$(\lambda_1,ec{\mathrm{v}}_1), \quad (\lambda_2,ec{\mathrm{v}}_2), \quad (\lambda_3,ec{\mathrm{v}}_3),$$

with $\vec{v}_1, \vec{v}_2, \vec{v}_3$ independent. The eigenvalues $\lambda_1, \lambda_2, \lambda_3$ can be all real. Also, there can be one real eigenvalue λ_3 and a complex conjugate pair of eigenvalues $\lambda_1 = \overline{\lambda}_2 = a + ib$ with b > 0.

Theorem 2 (Eigenanalysis Method) The general solution of $\vec{x}' = A\vec{x}$ with 3×3 real A can be written as

$$ec{\mathrm{x}}(t)=c_1e^{\lambda_1t}ec{\mathrm{v}}_1+c_2e^{\lambda_2t}ec{\mathrm{v}}_2+c_3e^{\lambda_3t}ec{\mathrm{v}}_3.$$

Solving 3 imes 3 Systems $ec{\mathbf{x}}' = A ec{\mathbf{x}}$ with Complex Eigenvalues

If there are complex eigenvalues $\lambda_1 = \overline{\lambda}_2$, then the real general solution is expressed in terms of independent solutions

$$ec{\mathbf{w}}_1 = R\mathbf{e}(e^{\lambda_1 t}ec{\mathbf{v}}_1), \ ec{\mathbf{w}}_2 = I\mathbf{m}(e^{\lambda_1 t}ec{\mathbf{v}}_1)$$

as the linear combination

$$ec{{
m x}}(t)=c_1ec{{
m w}}_1(t)+c_2ec{{
m w}}_2(t)+c_3e^{\lambda_3 t}ec{{
m v}}_3.$$

The Eigenanalysis Method for Second Order Systems

Theorem 3 (Second Order Systems)

Let A be real and 3×3 with three negative eigenvalues $\lambda_1 = -\omega_1^2$, $\lambda_2 = -\omega_2^2$, $\lambda_3 = -\omega_3^2$. Let the eigenpairs of A be listed as

$$(\lambda_1,ec{\mathrm{v}}_1), \; (\lambda_2,ec{\mathrm{v}}_2), \; (\lambda_3,ec{\mathrm{v}}_3).$$

Then the general solution of the second order system $ec{\mathbf{x}}''(t) = Aec{\mathbf{x}}(t)$ is

$$egin{aligned} ec{\mathrm{x}}(t) &= \left(a_1\cos\omega_1t+b_1rac{\sin\omega_1t}{\omega_1}
ight)ec{\mathrm{v}}_1 \ &+ \left(a_2\cos\omega_2t+b_2rac{\sin\omega_2t}{\omega_2}
ight)ec{\mathrm{v}}_2 \ &+ \left(a_3\cos\omega_3t+b_3rac{\sin\omega_3t}{\omega_3}
ight)ec{\mathrm{v}}_3 \end{aligned}$$

Vector-Matrix Form of the Solution of $ec{\mathbf{x}}' = A ec{\mathbf{x}}_-$

The solution of $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ in the 3×3 case is written in vector-matrix form

$$ec{\mathrm{x}}(t) = \mathrm{aug}(ec{\mathrm{v}}_1, ec{\mathrm{v}}_2, ec{\mathrm{v}}_3) \left(egin{array}{c} e^{\lambda_1 t} & 0 & 0 \ 0 & e^{\lambda_2 t} & 0 \ 0 & 0 & e^{\lambda_3 t} \end{array}
ight) \left(egin{array}{c} c_1 \ c_2 \ c_3 \end{array}
ight).$$

This formula is normally used when the eigenpairs are real.

Complex Eigenvalues for a 2×2 System

When there is a complex conjugate pair of eigenvalues $\lambda_1 = \overline{\lambda}_2 = a + ib$, b > 0, then it is possible to extract a real solution \vec{x} from the complex formula and report a real solution. The work can be organized more efficiently using the matrix product

$$ec{\mathrm{x}}(t) \;=\; e^{at} rg(R\mathrm{e}(ec{\mathrm{v}}_1),I\mathrm{m}(ec{\mathrm{v}}_1)) \left(egin{array}{c} \cos bt & \sin bt \ -\sin bt & \cos bt \end{array}
ight) \left(egin{array}{c} c_1 \ c_2 \end{array}
ight).$$

Complex Eigenvalues for a 3×3 System

When there is a complex conjugate pair of eigenvalues $\lambda_1 = \overline{\lambda}_2 = a + ib$, b > 0, then a real solution \vec{x} can be extracted from the complex formula to report a real solution. The work is organized using the matrix product

$$ec{{
m x}}(t) \ = \ {
m aug}(R{
m e}(ec{{
m v}}_1), I{
m m}(ec{{
m v}}_1), ec{{
m v}}_3) \left(egin{array}{c} e^{at}\cos bt & e^{at}\sin bt & 0 \ -e^{at}\sin bt & e^{at}\cos bt & 0 \ 0 & 0 & e^{\lambda_3 t} \end{array}
ight) \left(egin{array}{c} c_1 \ c_2 \ c_3 \end{array}
ight)$$

Four Methods for Solving a 2 imes 2 System $ec{\mathrm{u}}'=Aec{\mathrm{u}}$.

- 1. First-order method. If A is diagonal, then use growth-decay methods. If A is triangular, then use the linear integrating factor method.
- 2. Cayley-Hamilton-Ziebur method. If A is not diagonal, and $a_{12} \neq 0$, then $u_1(t)$ is a linear combination of the atoms constructed from the roots r of $\det(A rI) = 0$. Solution $u_2(t)$ is found from the system by solving for u_2 in terms of u_1 and u'_1 .
- 3. Eigenanalysis method. Assume A has eigenpairs (λ_1, \vec{v}_1) , (λ_2, \vec{v}_2) with \vec{v}_1 , \vec{v}_2 independent. Then $\vec{u}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2$.
- 4. Resolvent method. In Laplace notation, $\vec{u}(t) = L^{-1}((sI A)^{-1}\vec{u}(0))$. The inverse of C = sI A is found from the formula $C^{-1} = \operatorname{adj}(C)/\det(C)$. Cramer's Rule can replace the matrix inversion method.

Four Methods for Solving an n imes n System $ec{\mathrm{u}}' = A ec{\mathrm{u}}$.

- 1. First-order method. If A is diagonal, then use growth-decay methods. If A is triangular, then use the linear integrating factor method.
- 2. Cayley-Hamilton-Ziebur method. The solution $\vec{u}(t)$ is a linear combination of the atoms constructed from the roots r of det(A rI) = 0,

$$ec{\mathrm{u}}(t) = (\mathrm{atom}_1)ec{\mathrm{d}}_1 + \dots + (\mathrm{atom}_n)ec{\mathrm{d}}_n.$$

To solve for the constant vectors \vec{d}_j , differentiate the formula n - 1 times, then use $A^k \vec{u}(t) = \vec{u}^{(k+1)}(t)$ and set t = 0, to obtain a system for $\vec{d}_1, \dots, \vec{d}_n$.

- 3. Eigenanalysis method. Assume A has eigenpairs $(\lambda_1, \vec{v}_1), \ldots, (\lambda_n, \vec{v}_n)$ with $\vec{v}_1, \ldots, \vec{v}_n$ independent. Then $\vec{u}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + \cdots + c_n e^{\lambda_n t} \vec{v}_n$.
- 4. Resolvent method. In Laplace notation, $\vec{u}(t) = L^{-1}((sI A)^{-1}\vec{u}(0))$. The inverse of C = sI A is found from the formula $C^{-1} = \operatorname{adj}(C)/\det(C)$. Cramer's Rule can replace the matrix inversion method.