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4.1 Solving y′ = F (x) Numerically

Studied here is the creation of numerical tables and graphics for the
solution of the initial value problem

y′ = F (x), y(x0) = y0.(1)

To illustrate, consider the initial value problem

y′ = 3x2 − 1, y(0) = 2.

Quadrature gives the explicit symbolic solution

y(x) = x3 − x+ 2.

In Figure 1, evaluation of y(x) from x = 0 to x = 1 in increments of 0.1
gives the xy-table, whose entries represent the dots for the connect-
the-dots graphic.



4.1 Solving y′ = F (x) Numerically 225

x

y
x y

0.0 2.000
0.1 1.901
0.2 1.808
0.3 1.727
0.4 1.664
0.5 1.625

x y
0.6 1.616
0.7 1.643
0.8 1.712
0.9 1.829
1.0 2.000

Figure 1. A table of xy-values for y = x3 − x+ 2.

The graphic represents the table’s rows as dots, which are joined to make the

connect-the-dots graphic.

The interesting case is when quadrature in (1) encounters an integral∫ x
x0
F (t)dt that cannot be evaluated to provide an explicit symbolic equa-

tion for y(x). Nevertheless, y(x) can be computed numerically.

Applied here are numerical integration rules from calculus: rectangular,
trapezoidal and Simpson; see page 230 for a review of the three rules. The
ideas lead to the numerical methods of Euler, Heun and Runge-Kutta,
which appear later in this chapter.

How to make an xy-table. Given y′ = F (x), y(x0) = y0, a table
of xy-values is created as follows. The x-values are equally spaced a
distance h > 0 apart. Each x, y pair in the table represents a dot in the
connect-the-dots graphic of the explicit solution

y(x) = y0 +

∫ x

x0
F (t)dt.

First table entry. The initial condition y(x0) = y0 identifies two con-
stants x0, y0 to be used for the first table pair X, Y . For example,
y(0) = 2 identifies first table pair X = 0, Y = 2.

Second table entry. The second table pair X, Y is computed from
the first table pair x0, y0 and a recurrence. The X-value is given by
X = x0 + h, while the Y -value is given by the numerical integration
method being used, in accordance with Table 1 (the table is justified on
page 233).

Table 1. Three numerical integration methods.

Rectangular Rule Y = y0 + hF (x0)

Trapezoidal Rule Y = y0 +
h

2
(F (x0) + F (x0 + h))

Simpson’s Rule Y = y0 +
h

6
(F (x0) + 4F (x0 + h/2) + F (x0 + h)))

Third and higher table entries. They are computed by letting x0,
y0 be the current table entry, then the next table entry X, Y is found
exactly as outlined above for the second table entry.
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It is expected, and normal, to compute the table entries using computer
assist. In simple cases, a calculator will suffice. If F is complicated or
Simpson’s rule is used, then a computer algebra system or a numerical
laboratory is recommended. See Example 2, page 227.

How to make a connect-the-dots graphic. To illustrate, con-
sider the xy-pairs below, which are to represent the dots in the connect-
the-dots graphic.

(0.0, 2.000), (0.1, 1.901), (0.2, 1.808), (0.3, 1.727), (0.4, 1.664),

(0.5, 1.625), (0.6, 1.616), (0.7, 1.643), (0.8, 1.712), (0.9, 1.829),

(1.0, 2.000).

Hand drawing. The method, unchanged from high school mathematics
courses, is to plot the points as dots on an xy-coordinate system, then
connect the dots with line segments. See Figure 2.

y

x

Figure 2. A Connect-the-Dots Graphic.
A computer-generated graphic made to simulate
hand-drawn.

Computer algebra system graphic. The computer algebra system
maple has a primitive syntax especially made for connect-the-dots graph-
ics. Below, Dots is a list of xy-pairs.

Dots:=[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],

[0.3, 1.727], [0.4, 1.664], [0.5, 1.625],

[0.6, 1.616], [0.7, 1.643], [0.8, 1.712],

[0.9, 1.829], [1.0, 2.000]:

plot([Dots]);

The plotting of points only can be accomplished by adding options into
the plot command: type=point and symbol=circle will suffice.

Numerical laboratory graphic. The computer programs matlab,
octave and scilab provide primitive plotting facilities, as follows.

X=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]

Y=[2.000, 1.901, 1.808, 1.727, 1.664, 1.625,

1.616, 1.643, 1.712, 1.829, 2.000]

plot(X,Y)

1 Example (Rectangular Rule) Consider y′ = 3x2 − 2x, y(0) = 0. Apply
the rectangular rule to make an xy-table for y(x) from x = 0 to x = 2 in
steps of h = 0.2. Graph the approximate solution and the exact solution
y(x) = x3 − x2 for 0 ≤ x ≤ 2.
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Solution: The exact solution y = x3−x2 is verified directly, by differentiation.
It was obtained by quadrature applied to y′ = 3x2 − 2x, y(0) = 0.

The first table entry 0, 0 is used to obtain the second table entry X = 0.2,
Y = 0 as follows.

x0 = 0, y0 = 0 The current table entry, row 1.

X = x0 + h The next table entry, row 2.

= 0.2, Use x0 = 0, h = 0.2.

Y = y0 + hF (x0) Rectangular rule.

= 0 + 0.2(0). Use h = 0.2, F (x) = 3x2 − 2x.

The remaining 9 rows of the table are completed by calculator, following the
pattern above for the second table entry. The result:

Table 2. Rectangular rule solution and exact values for y′ = 3x2− 2x,
y(0) = 0 on 0 ≤ x ≤ 2, step size h = 0.2.

x y-rect y-exact
0.0 0.000 0.000
0.2 0.000 −0.032
0.4 −0.056 −0.096
0.6 −0.120 −0.144
0.8 −0.144 −0.128
1.0 −0.080 0.000

x y-rect y-exact
1.2 0.120 0.288
1.4 0.504 0.784
1.6 1.120 1.536
1.8 2.016 2.592
2.0 3.240 4.000

The xy-values from the table are used to obtain the comparison plot in
Figure 3.

y Exact

x

Approximate
Figure 3. Comparison Plot.
Rectangular rule numerical solution and
the exact solution for y = x3 − x2 for
y′ = 3x2 − 2x, y(0) = 0.

2 Example (Trapezoidal Rule) Consider y′ = cosx + 2x, y(0) = 0. Apply
both the rectangular and trapezoidal rules to make an xy-table for y(x) from
x = 0 to x = π in steps of h = π/10. Compare the two approximations in
a graphic for 0 ≤ x ≤ π.

Solution: The exact solution y = sinx+ x2 is verified directly, by differentia-
tion. It will be seen that the trapezoidal solution is nearly identical, graphically,
to the exact solution.

The table will have 11 rows. The three columns are x, y-rectangular and y-
trapezoidal. The first table entry 0, 0, 0 is used to obtain the second table entry
0.1π, 0.31415927, 0.40516728 as follows.

Rectangular rule second entry.

Y = y0 + hF (x0) Rectangular rule.

= 0 + h(cos 0 + 2(0)) Use F (x) = cosx+ 2x, x0 = y0 = 0.
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= 0.31415927. Use h = 0.1π = 0.31415927.

Trapezoidal rule second entry.

Y = y0 + 0.5h(F (x0) + F (x0 + h)) Trapezoidal rule.

= 0 + 0.05π(cos 0 + cosh+ 2h) Use x0 = y0 = 0, F (x) = cosx+ 2x.

= 0.40516728. Use h = 0.1π.

The remaining 9 rows of the table are completed by calculator, following the
pattern above for the second table entry. The result:

Table 3. Rectangular and trapezoidal solutions for y′ = cosx + 2x,
y(0) = 0 on 0 ≤ x ≤ π, step size h = 0.1π.

x y-rect y-trap
0.000000 0.000000 0.000000
0.314159 0.314159 0.405167
0.628319 0.810335 0.977727
0.942478 1.459279 1.690617
1.256637 2.236113 2.522358
1.570796 3.122762 3.459163

x y-rect y-trap
1.884956 4.109723 4.496279
2.199115 5.196995 5.638458
2.513274 6.394081 6.899490
2.827433 7.719058 8.300851
3.141593 9.196803 9.869604

y

x

Figure 4. Comparison Plot.
Rectangular (solid) and trapezoidal (dotted)
numerical solutions for y′ = cosx+ 2x,
y(0) = 0 for h = 0.1π on 0 ≤ x ≤ π.

Computer algebra system. The maple implementation for Example 2
appears below. The code produces lists Dots1 and Dots2 which contain
Rectangular (left panel) and Trapezoidal (right panel) approximations.

# Rectangular algorithm

# Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots1:=[x0,y0]:

# Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*F(x0):

x0:=x0+h:y0:=evalf(Y):

Dots1:=Dots1,[x0,y0];

end do;

# Group 3, plot.

plot([Dots1]);

# Trapezoidal algorithm

# Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots2:=[x0,y0]:

# Group 2, repeat 10 times

for i from 1 to 10 do

Y:=y0+h*(F(x0)+F(x0+h))/2:

x0:=x0+h:y0:=evalf(Y):

Dots2:=Dots2,[x0,y0];

end do;

# Group 3, plot.

plot([Dots2]);
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3 Example (Simpson’s Rule) Consider y′ = e−x
2
, y(0) = 0. Apply both

the rectangular and Simpson rules to make an xy-table for y(x) from x = 0
to x = 1 in steps of h = 0.1. In the table, include values for the exact

solution y(x) =
√
π
2 erf(x). Compare the two approximations in a graphic

for 0.8 ≤ x ≤ 1.0.

Solution: The error function erf(x) = 2√
π

∫ x
0
e−t

2

dt is a library function

available in maple, mathematica, matlab and other computing platforms. It is
known that the integral cannot be expressed in terms of elementary functions.

The xy-table. There will be 11 rows, for x = 0 to x = 1 in steps of h = 0.1.
There are four columns: x, y-rectangular, y-Simpson, y-exact.

The first row arises from y(0) = 0, giving the four entries 0, 0, 0, 0. It will
be shown how to obtain the second row by calculator methods, for the two
algorithms rectangular and Simpson.

Rectangular rule second entry.

Y 1 = y0 + hF (x0) Rectangular rule.

= 0 + h(e0) Use F (x) = e−x
2

, x0 = y0 = 0.

= 0.1. Use h = 0.1.

Simpson rule second entry.

Y 2 = y0 + h
6 (F (x0) + 4F (x1) + F (x2)) Simpson rule, x1 = x0 + h/2,

x2 = x0 + h.

= 0 + h
6 (e0 + 4e.5 + e.1) Use F (x) = e−x

2

, x0 = y0 = 0.

= 0.09966770540. Use h = 0.1.

Exact solution second entry.
The numerical work requires the tabulated function erf(x). The maple details:

x0:=0:y0:=0:h:=0.1: Given.
c:=sqrt(Pi)/2 Conversion factor.

Exact:=x->y0+c*erf(x): Exact solution y = y0 +
∫ x
0
e−t

2

dt.
Y3:=Exact(x0+h); Calculate exact answer.
# Y3 := .09966766428

Table 4. Rectangular and Simpson Rule.
Numerical solutions for y′ = e−x

2

, y(0) = 0 on 0 ≤ x ≤ π, step size h = 0.1.

x y-rect y-Simp y-exact
0.0 0.00000000 0.00000000 0.00000000
0.1 0.10000000 0.09966771 0.09966766
0.2 0.19900498 0.19736511 0.19736503
0.3 0.29508393 0.29123799 0.29123788
0.4 0.38647705 0.37965297 0.37965284
0.5 0.47169142 0.46128114 0.46128101
0.6 0.54957150 0.53515366 0.53515353
0.7 0.61933914 0.60068579 0.60068567
0.8 0.68060178 0.65766996 0.65766986
0.9 0.73333102 0.70624159 0.70624152
1.0 0.77781682 0.74682418 0.74682413
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Rect

0.64

0.8
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x

y

Simp
Figure 5. Comparison Plot.

Rectangular (dotted) and
Simpson (solid) numerical

solutions for y′ = e−x
2

, y(0) = 0
for h = 0.1 on 0.8 ≤ x ≤ 1.0.

Computer algebra system. The maple implementation for Example 3 ap-
pears below. The code produces two lists Dots1 and Dots2 which contain
Rectangular (left panel) and Simpson (right panel) approximations.

# Rectangular algorithm

# Group 1, initialize.

F:=x->evalf(exp(-x*x)):

x0:=0:y0:=0:h:=0.1:

Dots1:=[x0,y0]:

# Group 2, repeat 10 times

for i from 1 to 10 do

Y:=evalf(y0+h*F(x0)):

x0:=x0+h:y0:=Y:

Dots1:=Dots1,[x0,y0];

end do;

# Group 3, plot.

plot([Dots1]);

# Simpson algorithm

# Group 1, initialize.

F:=x->evalf(exp(-x*x)):

x0:=0:y0:=0:h:=0.1:

Dots2:=[x0,y0]:

# Group 2, loop count = 10

for i from 1 to 10 do

Y:=evalf(y0+h*(F(x0)+

4*F(x0+h/2)+F(x0+h))/6):

x0:=x0+h:y0:=Y:

Dots2:=Dots2,[x0,y0];

end do;

# Group 3, plot.

plot([Dots2]);

Review of Numerical Integration

Reproduced here are calculus topics: the rectangular rule, the trape-
zoidal rule and Simpson’s rule for the numerical approximation of
an integral

∫ b
a F (x)dx. The approximations are valid for b − a small.

Larger intervals must be subdivided, then the rule applies to the small
subdivisions.

Rectangular Rule. The approximation uses Eu-
ler’s idea of replacing the integrand by a constant. The
value of the integral is approximately the area of a rect-
angle of width b− a and height F (a).

F

x
a b

y

∫ b

a
F (x)dx ≈ (b− a)F (a).(2)
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Trapezoidal Rule. The rule replaces the integrand
F (x) by a linear function L(x) which connects the pla-
nar points (a, F (a)), (b, F (b)). The value of the integral
is approximately the area under the curve L, which is
the area of a trapezoid.

F

x
a b

y

L

∫ b

a
F (x)dx ≈ b− a

2
(F (a) + F (b)) .(3)

Simpson’s Rule. The rule replaces the integrand
F (x) by a quadratic polynomial Q(x) which connects
the planar points (a, F (a)), ((a + b)/2, F ((a + b)/2)),
(b, F (b)). The value of the integral is approximately
the area under the quadratic curve Q.

F

x

y

a b

Q

∫ b

a
F (x)dx ≈ b− a

6

(
F (a) + 4F

(
a+ b

2

)
+ F (b)

)
.(4)

Simpson’s Polynomial Rule. If Q(x) is constant, or a linear,
quadratic or cubic polynomial, then (proof on page 232)∫ b

a
Q(x)dx =

b− a
6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(5)

Integrals of linear, quadratic and cubic polynomials can be evaluated
exactly using Simpson’s polynomial rule (5); see Example 4, page 231.

Remarks on Simpson’s Rule. The right side of (4) is exactly the
integral of Q(x), which is evaluated by equation (5). The appearance
of F instead of Q on the right in equation (4) is due to the relations
Q(a) = F (a), Q((a + b)/2) = F ((a + b)/2), Q(b) = F (b), which arise
from the requirement that Q connect three points along curve F .

The quadratic interpolation polynomial Q(x) is determined uniquely
from the three data points; see Quadratic Interpolant, page 232, for
a formula for Q and a derivation. It is interesting that Simpson’s rule
depends only upon the uniqueness and not upon the actual formula for
Q!

4 Example (Polynomial Quadrature) Apply Simpson’s polynomial rule (5)
to verify

∫ 2
1 (x3 − 16x2 + 4)dx = −355/12.

Solution: The application proceeds as follows:

I =
∫ 2

1
Q(x)dx Evaluate integral I using Q(x) =

x3 − 16x2 + 4.
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=
2− 1

6
(Q(1) + 4Q(3/2) +Q(2)) Apply Simpson’s polynomial rule (5).

=
1

6
(−11 + 4(−229/8)− 52) Use Q(x) = x3 − 16x2 + 4.

= −355

12
. Equality verified.

Simpson’s Polynomial Rule Proof. Let Q(x) be a linear, quadratic or cubic
polynomial. It will be verified that∫ b

a

Q(x)dx =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(6)

If the formula holds for polynomial Q and c is a constant, then the formula also
holds for the polynomial cQ. Similarly, if the formula holds for polynomials Q1

and Q2, then it also holds for Q1 + Q2. Consequently, it suffices to show that
the formula is true for the special polynomials 1, x, x2 and x3, because then it
holds for all combinations Q(x) = c0 + c1x+ c2x

2 + c3x
3.

Only the special case Q(x) = x3 will be treated here. The other cases are left
to the exercises. The details:

RHS =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
Evaluate the right side of
equation (6).

=
b− a

6

(
a3 +

1

2
(a+ b)3 + b3

)
Substitute Q(x) = x3.

=
b− a

6

(
3

2

)(
a3 + a2b+ ab2 + b3

)
Expand (a+ b)3. Simplify.

=
1

4

(
b4 − a4

)
, Multiply and simplify.

LHS =
∫ b
a
Q(x)dx Evaluate the left hand side

(LHS) of equation (6).

=
∫ b
a
x3dx Substitute Q(x) = x3.

=
1

4

(
b4 − a4

)
Evaluate.

= RHS. Compare with the RHS.

This completes the proof of Simpson’s polynomial rule.

Quadratic Interpolant Q. Given a < b and the three data points
(a, Y0), ((a + b)/2, Y1)), (b, Y2)), then there is a unique quadratic curve
Q(X) which connects the points, given by

Q(X) = Y0 + (4Y1 − Y2 − 3Y0)
X − a
b− a

+ (2Y2 + 2Y0 − 4Y1)
(X − a)2

(b− a)2
.

(7)

Proof: The term quadratic is meant loosely: it can be a constant or linear
function as well.
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Uniqueness of the interpolant Q is established by subtracting two candidates to
obtain a polynomial P of degree at most two which vanishes at three distinct
points. By Rolle’s theorem, P ′ vanishes at two distinct points and hence P ′′

vanishes at one point. Writing P (X) = c0 + c1X+ c2X
2 shows c2 = 0 and then

c1 = c0 = 0, or briefly, P ≡ 0. Hence the two candidates are identical.

It remains to verify the given formula (7). The details are presented as two
lemmas.1 The first lemma contains the essential ideas. The second simply
translates the variables.

Lemma 1 Given y1 and y2, define A = y2−y1, B = 2y1−y2. Then the quadratic
y = x(Ax+B) fits the data items (0, 0), (1, y1), (2, 2y2).

Lemma 2 Given Y0, Y1 and Y2, define y1 = Y1−Y0, y2 = 1
2 (Y2−Y0), A = y2−y1,

B = 2y1−y2 and x = 2(X−a)/(b−a). Then quadratic Y (X) = Y0 +x(Ax+B)
fits the data items (a, Y0), ((a+ b)/2, Y1), (b, Y2).

To verify the first lemma, the formula y = x(Ax + B) is tested to go through
the given data points (0, 0), (1, y1) and (2, 2y2). For example, the last pair is
tested by the steps

y(2) = 2(2A+B) Apply y = x(Ax+B) with x = 2.

= 4y2 − 4y1 + 4y1 − 2y2 Use A = y2 − y1 and B = 2y1 − y2.

= 2y2. Therefore, the quadratic fits data item
(2, 2y2).

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the
first lemma, Y = Y0 + y. The data fit is checked as follows:

Y (b) = Y0 + y(2) Apply formulas Y (X) = Y0 + y(x), y(x) =
x(Ax+B) with X = b and x = 2.

= Y0 + 2y2 Apply data fit y(2) = 2y2.

= Y2. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes
the proof of the two lemmas. The formula for Q is obtained from the second
lemma as Q = Y0 +Bx+Ax2 with substitutions for A, B and x performed to
obtain the given equation for Q in terms of Y0, Y1, Y2, a, b and X.

Justification of Table 1: The method of quadrature applied to y′ = F (x),
y(x0) = y0 gives an explicit solution y(x) involving the integral of F . Specialize
this solution formula to x = x0 + h where h > 0. Then

y(x0 + h) = y0 +

∫ x0+h

x0

F (t)dt.

All three methods in Table 1 are derived by replacment of the integral above
by the corresponding approximation taken from the rectangular, trapezoidal or

1What’s a lemma? It’s a helper theorem, used to dissect long proofs into short
pieces.
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Simpson method on page 230. For example, the trapezoidal method gives∫ x0+h

x0

F (t)dt ≈ h

2
(F (x0) + F (x0 + h)) ,

whereupon replacement into the formula for y gives the entry in Table 1 as

Y ≈ y(x0 + h) ≈ y0 +
h

2
(F (x0) + F (x0 + h)) .

This completes the justification of Table 1.

Exercises 4.1

Connect-the-Dots. Make a numeri-
cal table of 6 rows and a connect-the-
dots graphic for the following.

1. y = 2x+ 5, x = 0 to x = 1

2. y = 3x+ 5, x = 0 to x = 2

3. y = 2x2 + 5, x = 0 to x = 1

4. y = 3x2 + 5, x = 0 to x = 2

5. y = sinx, x = 0 to x = π/2

6. y = sin 2x, x = 0 to x = π/4

7. y = x ln |1 + x|, x = 0 to x = 2

8. y = x ln |1 + 2x|, x = 0 to x = 1

9. y = xex, x = 0 to x = 1

10. y = x2ex, x = 0 to x = 1/2

Rectangular Rule. Apply the rectan-
gular rule to make an xy-table for y(x)
with 11 rows and step size h = 0.1.
Graph the approximate solution and
the exact solution. Follow example 1.

11. y′ = 2x, y(0) = 5.

12. y′ = 3x2, y(0) = 5.

13. y′ = 3x2 + 2x, y(0) = 4.

14. y′ = 3x2 + 4x3, y(0) = 4.

15. y′ = sinx, y(0) = 1.

16. y′ = 2 sin 2x, y(0) = 1.

17. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

18. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

19. y′ = xex, y(0) = 1. Exact xex −
ex + 2.

20. y′ = 2x2e2x, y(0) = 4. Exact
2x2ex − 4xex + 4 ex.

Trapezoidal Rule. Apply the trape-
zoidal rule to make an xy-table for
y(x) with 6 rows and step size h = 0.2.
Graph the approximate solution and
the exact solution. Follow example 2.

21. y′ = 2x, y(0) = 1.

22. y′ = 3x2, y(0) = 1.

23. y′ = 3x2 + 2x, y(0) = 2.

24. y′ = 3x2 + 4x3, y(0) = 2.

25. y′ = sinx, y(0) = 4.

26. y′ = 2 sin 2x, y(0) = 4.

27. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

28. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

29. y′ = xex, y(0) = 1. Exact xex −
ex + 2.

30. y′ = 2x2e2x, y(0) = 4. Exact
2x2ex − 4xex + 4 ex.
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Simpson Rule. Apply Simpson’s rule
to make an xy-table for y(x) with 6
rows and step size h = 0.2. Graph the
approximate solution and the exact so-
lution. Follow example 3.

31. y′ = 2x, y(0) = 2.

32. y′ = 3x2, y(0) = 2.

33. y′ = 3x2 + 2x, y(0) = 3.

34. y′ = 3x2 + 4x3, y(0) = 3.

35. y′ = sinx, y(0) = 5.

36. y′ = 2 sin 2x, y(0) = 5.

37. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

38. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

39. y′ = xex, y(0) = 1. Exact xex −
ex + 2.

40. y′ = 2x2e2x, y(0) = 4. Exact
2x2ex − 4xex + 4 ex.

Simpson’s Rule. The following ex-
ercises use formulas and techniques
found in the proof on page 232 and in
Example 4, page 231.

41. Verify with Simpson’s rule (5)
for cubic polynomials the equality∫ 2

1
(x3 + 16x2 + 4)dx = 541/12.

42. Verify with Simpson’s rule (5)
for cubic polynomials the equality∫ 2

1
(x3 + x+ 14)dx = 77/4.

43. Let f(x) satisfy f(0) = 1,
f(1/2) = 6/5, f(1) = 3/4. Ap-
ply Simpson’s rule with one divi-

sion to verify that
∫ 1

0
f(x)dx ≈

131/120.

44. Let f(x) satisfy f(0) = −1,
f(1/2) = 1, f(1) = 2. Apply
Simpson’s rule with one division

to verify that
∫ 1

0
f(x)dx ≈ 5/6.

45. Verify Simpson’s equality (5), as-
suming Q(x) = 1 and Q(x) = x.

46. Verify Simpson’s equality (5), as-
suming Q(x) = x2.

Quadratic Interpolation. The fol-
lowing exercises use formulas and tech-
niques from the proof on page 232.

47. Verify directly that the quadratic
polynomial y = x(7 − 4x) goes
through the points (0, 0), (1, 3),
(2,−2).

48. Verify directly that the quadratic
polynomial y = x(8 − 5x) goes
through the points (0, 0), (1, 3),
(2,−4).

49. Compute the quadratic interpo-
lation polynomial Q(x) which
goes through the points (0, 1),
(0.5, 1.2), (1, 0.75).

50. Compute the quadratic interpo-
lation polynomial Q(x) which
goes through the points (0,−1),
(0.5, 1), (1, 2).

51. Verify the remaining cases in
Lemma 1, page 233.

52. Verify the remaining cases in
Lemma 2, page 233.


