MATH 2280-001
EXAM 2

Instructions. There are 3 problems on the exam. Put your name on the exam. Calculators or other electronic devices are not allowed, but you are allowed one side of an 8.5 by 11 inch sheet of notes. Show your work for full credit.

1. (33 points) Consider the mass spring equation

$$
4 x^{\prime \prime}+2 x^{\prime}+\frac{1}{2} x=f(t)
$$

a. Explain what x represents, as well as the terms $2 x^{\prime}$ and $\frac{1}{2} x$.
b. Find the general solution of the homogeneous problem.
c. Find the solution satisfying the initial conditions $x(0)=4$, and $x^{\prime}(0)=0$
d. Express the solution found in part c , in the form $C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$.
e. If $f(t)=1+t+\sin (t)$, what form would a particular solution x_{p} have)from the method of undetermined coefficients) have?
a. x represents the displacement from equilibrium position $2 x^{\prime}$ is the force due 10 friction on the mars
$\frac{1}{2} x$ is the force of the sporing on the mass.
b. Chanateriste 1005 : $4 r^{2}+2 r+\frac{1}{2}=0 \Rightarrow 8 r^{2}+4 r+1=0$

$$
\begin{aligned}
& r=\frac{-4 \pm \sqrt{16-32}}{16}=\frac{-4 \pm 4 i}{16}=-\frac{1}{4} \pm \frac{1}{4} i \\
& \Rightarrow \text { general solution is } x(t)=c_{1} e^{-\frac{1}{4} t} \cos \frac{1}{4} t+c_{2} e^{-\frac{1}{4} t} \sin \frac{1}{4} t \\
& c_{1} x^{\prime}(t)=-\frac{1}{4} c_{1} e^{-\frac{1}{4} t} \cos \frac{1}{4} t-\frac{1}{4} c_{1} e^{-\frac{1}{4} t} \sin \frac{1}{4} t-\frac{1}{4} c_{2} e^{-\frac{1}{4} t} \frac{\sin \frac{1}{4} t+\frac{1}{4} c_{2} e^{-\frac{1}{4} t} \cos \frac{1}{4} t}{} \begin{array}{l}
x(0)=c_{1}=4 \Rightarrow c_{1}=4 \\
x_{1}^{\prime}(0)=-\frac{1}{4} c_{1}+\frac{1}{4} c_{2}=0 \Rightarrow c_{1}=4 \\
x(t)=4 e^{-1 / 4 t} \cos \frac{1}{4} t+4 e^{-1 / 4} t \\
\sin \frac{1}{4} t
\end{array}
\end{aligned}
$$

d. Apmplind $C=\sqrt{C_{1}^{2}+C_{2}^{2}}=\sqrt{16+10}=\sqrt{32}=4 \sqrt{2}$

$$
\omega_{1}=\frac{1}{4}, \tan \alpha=\frac{c_{2}}{c_{1}}=\frac{4}{4}=1 \Rightarrow \alpha=\operatorname{tani}^{-1} 1=\frac{\pi}{4}
$$

So $\quad x(t)=4 \sqrt{2} \cos \left(\frac{1}{4} t-\frac{\pi}{4}\right)$
e_{1} If $f(t)=1+t+\sin t$ then

$$
x_{p}=a_{1}+a_{2} t+b_{1} \cos t+b_{2} \sin t
$$

far some constants $a_{1}, a_{2}, b_{1}, b_{2}$. None of these terns is a solution of the homogeneous equation, thur there is no issue of duplication.
2. (34 points) Consider the system of differential equations $\mathrm{x}^{\prime}=A \mathrm{x}$ where $\mathrm{x}=$ $\left(x_{1} x_{2} x_{3}\right)^{T}$ and A is the matrix:

$$
\left(\begin{array}{ccc}
0 & -4 & 0 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right)
$$

8 a. Find the eigenvalues of A.
17 b. Find the general solution of the system using the eigenvalue method.
q c. Find the particular solution satisfying the initial condition $\mathbf{x}(0)=(315)^{T}$

$$
\text { a. } \begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
-\lambda & -4 & 0 \\
1 & -\lambda & -1 \\
0 & 0 & -1-\lambda
\end{array}\right)=(-1-\lambda)\left[\lambda^{2}+4\right] \quad \text { (expanding accost } \\
& \text { bolter nov) } \\
&=-(\lambda+1)\left(\lambda^{2}+4\right)=0
\end{aligned}
$$

$$
\Rightarrow \lambda=-1, \lambda^{2}+4=0 \Rightarrow \lambda=-1,2 i,-2 i
$$

b. We find the eigenvecta comarponding to $x=-10_{0}^{\circ}$

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
+1 & -4 & 0 & 0 \\
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & -4 & 0 & 0 \\
0 & 5 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & -4 & 0 & 0 \\
0 & 1 & -1 / 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 0 & -4 / 5 & 0 \\
0 & 1 & -4 / 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow \begin{array}{l}
x_{1}=4 / 5 x_{3} \\
x_{2}=1 / 5 x_{3} \\
x_{3}=x_{3}
\end{array} \text { setting } x_{3}=5 \Rightarrow \vec{v}_{1}=\left(\begin{array}{l}
4 \\
1 \\
5
\end{array}\right)
\end{aligned}
$$

The angle eigenvector corresponding to $x=2 i$:

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
-2 i & -4 & 0 & i \\
1 & -2 i & -1 & 0 \\
0 & 0 & -1-2 i & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & -2 i & -1 & 0 \\
-2 i & -4 & -1 & 0 \\
0 & 0 & 1 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & -2 i & -1 & 0 \\
0 & 0 & -1-2 i & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc:c}
1 & -2 i & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow \begin{array}{l}
x_{1}=2 i x_{2} \\
x_{2}=x_{2} \\
x_{3}=
\end{array} \text { set } x_{2}=1 \Rightarrow \vec{v}=\left(\begin{array}{c}
2 i \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

expensing in real + imaginary puts!

$$
\vec{v}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+i\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)
$$

Complex Solution is $\vec{z}(t)=e^{2 i t} \vec{v}=(\cos 2 t+i \sin 2 t)\left[\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+i\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)\right]$

$$
=\left[\cos 2 t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\sin 2 t\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)\right]+i\left[\cos 2 t\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)+\sin 2 t\binom{0}{0}\right]
$$

the real + imaginary pants gie us independat solution.
Together with $e^{-t}\left(\begin{array}{l}4 \\ 1 \\ 5\end{array}\right)$ we get the general
solution:

$$
\left.\vec{x}(t)=c_{1} e^{-t}\left(\begin{array}{l}
4 \\
1 \\
5
\end{array}\right)+c_{2}\left[\cos 2 t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\sin 2 t\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)\right]+c_{3}\left[\cos 2 t\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)+\sin 2 t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right]\right)
$$

c_{1} We need to solve for c_{1}, c_{2}, c_{3} :

$$
\left.\left.\begin{array}{l}
\vec{x}(0)=C_{1}\left(\begin{array}{l}
4 \\
1 \\
5
\end{array}\right)+C_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+C_{3}\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
5
\end{array}\right) \quad n \\
\rightarrow\left(\begin{array}{lll:l}
4 & 0 & 2 & 3 \\
1 & 1 & 0 & 1 \\
5 & 0 & 0 & 5
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 0 & 0 & 1 \\
4 & 0 & 2 & 3 \\
1 & 1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll:l}
1 & 0 & 0 & 1 \\
0 & 0 & 2 & -1 \\
0 & 1 & 0 & 0
\end{array}\right) \\
0
\end{array} 0001,-1 / 2\right) \rightarrow c_{1}=1, c_{2}=0, c_{3}=-\frac{1}{2}\right)
$$

3. (33 points) Consider the following linear system of differential equations:

$$
\begin{aligned}
x^{\prime} & =x+3 y \\
y^{\prime} & =3 x+y
\end{aligned}
$$

a. Express the system in matrix form $\mathbf{x}^{\prime}=A \mathbf{x}$, and find the eigenvalues, and corresponding eigenvectors of A.
b. What is the general solution (express in vector form)?
c. Classify the critical point $(0,0)$ as a stable or unstable, node, spiral, saddle or center.
d. Sketch the phase diagram of the system. Include the eigenvectors (if real) in your sketch, as well as the trajectories that pass through the points $(1,0),(0,1),(-1,0)$, and ($0-1$).
a. $\vec{\chi}^{\prime}=\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right) \vec{x}$. Eigenvalue: $\operatorname{det}\left(\begin{array}{cc}1-\lambda & 3 \\ 3 & 1-\lambda\end{array}\right)=(1-\lambda)^{2}-9=0$

$$
\Rightarrow(1-\lambda)^{2}=9 \Rightarrow 1-\lambda= \pm \sqrt{9}= \pm 3 \Rightarrow \lambda=1 \pm 3, \lambda=-2,4
$$

Eigonvedtu: $\lambda_{1}=-2!\quad\left(\begin{array}{cc:c}3 & 3 & 0 \\ 3 & 3 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow \begin{aligned} & x_{1}+x_{2}=0 \\ & x_{2}=x_{2}\end{aligned}$

$$
\begin{aligned}
& x_{1}=-x_{2} \\
& x_{2}=x_{2}
\end{aligned} \quad \text { Setting } x_{2}=-1 \Rightarrow \vec{v}_{1}=\binom{1}{-1}
$$

$$
\lambda_{2}=4:\left(\begin{array}{cc|c}
-3 & 3 & 0 \\
3 & -3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cc:c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow \begin{aligned}
& x_{1}=x_{2} \\
& x_{2}=x_{2}
\end{aligned}
$$

Setting $x_{2}=1 \Rightarrow \vec{v}_{2}=\binom{1}{1}$
b. Cenarel Solution: $\vec{x}(t)=c_{1} e^{-2 t}\binom{1}{-1}+c_{2} e^{q t}\binom{1}{1}$
c. Since $-2,4$ hove opposite signs, $(0,0)$ is an unstable saddle.

