Sample Quiz 4

Sample Quiz4 Problem 1. The velocity of a crossbow arrow fired upward from the ground is given at different times in the following table.

Time t in seconds	Velocity $v(t)$ in ft/sec	Location
0.000	50	Ground
1.413	0	Maximum
2.980	-45	Near Ground Impact

(a) The velocity can be approximated by a quadratic polynomial

$$v(t) = at^2 + bt + c$$

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve for them to obtain $a \approx 2.238$, $b \approx -38.55$, c = 50.

- (b) Assume a drag model $v' = -32 \rho v$. Substitute the polynomial answer of (a) into this differential equation, then substitute t = 0 and solve for $\rho \approx 0.131$.
- (c) Solve the model $w' = -32 \rho w$, w(0) = 50 with $\rho = 0.131$.
- (d) Compare w(t) and v(t) in a plot. Comment on the plot and what it means.

References. Edwards-Penney sections 2.3, 3.1, 3.2. Course documents on Linear algebraic equations and Newton kinematics.

Sample Quiz4 Problem 2. Consider the system of differential equations

$$\begin{array}{rclrcl} x_1' & = & -\frac{1}{6}x_1 & & + & \frac{1}{6}x_3, \\ x_2' & = & \frac{1}{6}x_1 & - & \frac{1}{3}x_2, \\ x_3' & = & & \frac{1}{3}x_2 & - & \frac{1}{6}x_3, \end{array}$$

for the amounts x_1, x_2, x_3 of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C

The volumes are 60, 30, 60 for A, B, C, respectively.

The steady-state salt amounts in the three tanks are found by formally setting $x'_1 = x'_2 = x'_3 = 0$ and then solving for the symbols x_1, x_2, x_3 . Solve the corresponding linear system of algebraic equations to obtain the answer $x_1 = x_3 = 2c$, $x_2 = c$, which means the total amount of salt is uniformly distributed in the tanks in ratio 2:1:2.

References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5. Course documents on Linear algebraic equations and Systems and Brine Tanks.