Sample Quiz 8

Sample Quiz 8, Problem 1. RLC-Circuit

The Problem. Suppose $E=100 \sin (20 t), L=5 \mathrm{H}, R=250 \Omega$ and $C=0.002 \mathrm{~F}$. The model for the charge $Q(t)$ is $L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)$.
(a) Differentiate the charge model and substitute $I=\frac{d Q}{d t}$ to obtain the current model $5 I^{\prime \prime}+250 I^{\prime}+500 I=2000 \cos (20 t)$.
(b) Find the reactance $S=\omega L-\frac{1}{\omega C}$, where $\omega=20$ is the input frequency, the natural frequency of $E=100 \sin (20 t)$ and $E^{\prime}=2000 \cos (20 t)$.
(c) Substitute $I=A \cos (20 t)+B \sin (20 t)$ into the current model (a) and solve for $A=$ $\frac{-12}{109}, B=\frac{40}{109}$. Then the steady-state current is

$$
I(t)=A \cos (20 t)+B \sin (20 t)=\frac{-12 \cos (20 t)+40 \sin (20 t)}{109} .
$$

(d) Write the answer in (c) in phase-amplitude form $I=I_{0} \sin (20 t-\delta)$ with $I_{0}>0$ and $\delta \geq 0$. Then compute the time lag δ / ω.
Answers: $I_{0}=\frac{4}{\sqrt{109}}, \delta=\arctan (3 / 10), \delta / \omega=0.01457$.

References

Course slides on Electric Circuits. Edwards-Penney Differential Equations and Boundary Value Problems, sections 3.4, 3.5, 3.6, 3.7.

Solutions to Problem 1

Problem 1(a) Start with $5 Q^{\prime \prime}+250 Q^{\prime}+500 Q=100 \sin (20 t)$. Differentiate across to get $5 Q^{\prime \prime \prime}+250 Q^{\prime \prime}+500 Q^{\prime}=2000 \cos (20 t)$. Change Q^{\prime} to I.

Problem 1(b) $S=(20)(5)-1 /(20 * 0.002)=75$
Problem 1(c) It helps to use the differential equation $u^{\prime \prime}+400 u=0$ satisfied by both $u_{1}=$ $\cos (20 t)$ and $u_{2}=\sin (20 t)$. Functions u_{1}, u_{2} are Euler solution atoms, hence independent. Along the solution path, we'll use $u_{1}^{\prime}=-20 \sin (20 t)=-20 u_{2}$ and $u_{2}^{\prime}=20 \cos (20 t)=20 u_{1}$. The arithmetic is simplified by dividing the equation first by 5 . We then substitute $I=A u_{1}+B u_{2}$.

$$
\begin{aligned}
& I^{\prime \prime}+50 I^{\prime}+100 I=400 \sin (20 t) \\
& A\left(u_{1}^{\prime \prime}+50 u_{1}^{\prime}+100 u_{1}\right)+B\left(u_{2}^{\prime \prime}+50 u_{2}^{\prime}+100 u_{2}\right)=400 \sin (20 t) \\
& A\left(-400 u_{1}+50\left(-20 u_{2}\right)+100 u_{1}\right)+B\left(-400 u_{2}+50\left(20 u_{1}\right)+100 u_{2}\right)=400 \sin (20 t) \\
& (-400 A+100 A+1000 B) u_{1}+(-1000 A-400 B+100 B) u_{2}=400 u_{2}
\end{aligned}
$$

By independence of u_{1}, u_{2}, coefficients of u_{1}, u_{2} on each side of the equation must match. The linear algebra property is called unique representation of linear combinations. This implies the 2×2 system of equations

$$
\begin{aligned}
-300 A+1000 B & =0 \\
-1000 A-300 B & =400 .
\end{aligned}
$$

The solution by Cramer's rule (the easiest method) is $A=-12 / 109, B=40 / 109$. Then the steady-state current is

$$
I(t)=A \cos (20 t)+B \sin (20 t)=\frac{-12 \cos (20 t)+40 \sin (20 t)}{109} .
$$

The steady-state current is defined to be the sum of those terms in the general solution of the differential equation that remain after all terms that limit to zero at $t=\infty$ have been removed. The logic is that only these terms contribute to a graphic or to a numerical calculation after enough time has passed (as $t \rightarrow \infty$).

Problem 1(d) Let $\cos (\delta)=B / I_{0}, \sin (\delta)=-A / I_{0}, I_{0}=\sqrt{A^{2}+B^{2}}$. Use the trig identity

$$
\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b)
$$

to rearrange the current formula as follows:

$$
I(t)=A \cos (20 t)+B \sin (20 t)=I_{0}(\sin (20 t) \cos (\delta)-\sin (\delta) \cos (20 t))=I_{0} \sin (20 t-\delta) .
$$

Compute $I_{0}=\sqrt{A^{2}+B^{2}}=\frac{4}{\sqrt{109}}$. Compute $\tan (\delta)=\frac{\sin \delta}{\cos \delta}=-A / B=12 / 40$. Then $\delta=$ $\arctan (12 / 40)$ and finally $\delta / \omega=\arctan (3 / 10) / 20=0.01457$.
Another method, using Edwards-Penney Section 3.7: Compute the impedance $Z=\sqrt{R^{2}+S^{2}}=$ $\sqrt{250^{2}+75^{2}}=\sqrt{68125}=25 \sqrt{109}$ and then $I_{0}=E_{0} / Z=4 / \sqrt{109}$. The phase $\delta=\arctan (S / R)=$ $\arctan (75 / 250)=\arctan (3 / 10)$. Then the time lag is $\delta / \omega=\frac{\arctan (0.3)}{20}=0.01457$.

Sample Quiz 8, Problem 2. Picard's Theorem and RLC-Circuit Models
Picard-Lindelöf Theorem. Let $\vec{f}(x, \vec{y})$ be defined for $\left|x-x_{0}\right| \leq h,\left\|\vec{y}-\vec{y}_{0}\right\| \leq k$, with \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ continuous. Then for some constant $H, 0<H<h$, the problem

$$
\left\{\begin{array}{l}
\vec{y}^{\prime}(x)=\vec{f}(x, \vec{y}(x)), \quad\left|x-x_{0}\right|<H, \\
\vec{y}\left(x_{0}\right)=\overrightarrow{y_{0}}
\end{array}\right.
$$

has a unique solution $\vec{y}(x)$ defined on the smaller interval $\left|x-x_{0}\right|<H$.

Emile Picard

The Problem. The second order problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+2 u^{\prime}+5 u=60 \sin (20 x) \tag{1}\\
u(0)=1 \\
u^{\prime}(0)=0
\end{array}\right.
$$

is an $R L C$-circuit charge model, in which the variables have been changed. The variables are time x in seconds and charge $u(x)$ in coulombs. Coefficients in the equation represent an inductor $L=1 \mathrm{H}$, a resistor $R=2 \Omega$, a capacitor $C=0.2 \mathrm{~F}$ and a voltage input $E(x)=60 \sin (20 x)$.
The several parts below detail how to convert the scalar initial value problem into a vector problem, to which Picard's vector theorem applies. Please fill in the missing details.
(a) The conversion uses the position-velocity substitution $y_{1}=u(x), y_{2}=u^{\prime}(x)$, where y_{1}, y_{2} are the invented components of vector \vec{y}. Then the initial data $u(0)=1, u^{\prime}(0)=0$ converts to the vector initial data

$$
\vec{y}(0)=\binom{1}{0} .
$$

(b) Differentiate the equations $y_{1}=u(x), y_{2}=u^{\prime}(x)$ in order to find the scalar system of two differential equations, known as a dynamical system:

$$
y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=-5 y_{1}-2 y_{2}+60 \sin (20 x) .
$$

(c) The derivative of vector function $\vec{y}(x)$ is written $\vec{y}^{\prime}(x)$ or $\frac{d \vec{y}}{d x}(x)$. It is obtained by componentwise differentiation: $\vec{y}^{\prime}(x)=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}$. The vector differential equation model of scalar system (??) is

$$
\left\{\begin{align*}
\vec{y}^{\prime}(x) & =\left(\begin{array}{rr}
0 & 1 \\
-5 & -2
\end{array}\right) \vec{y}(x)+\binom{0}{60 \sin (20 x)} \tag{2}\\
\vec{y}(0) & =\binom{1}{0}
\end{align*}\right.
$$

(d) System (??) fits the hypothesis of Picard's theorem, using symbols

$$
\vec{f}(x, \vec{y})=\left(\begin{array}{rr}
0 & 1 \\
-5 & -2
\end{array}\right) \vec{y}(x)+\binom{0}{60 \sin (20 x)}, \quad \overrightarrow{y_{0}}=\binom{1}{0} .
$$

The components of vector function \vec{f} are continuously differentiable in variables x, y_{1}, y_{2}, therefore \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ are continuous.

Solutions to Problem 2

(a) $\vec{y}(0)=\binom{y_{1}(0)}{y_{2}(0)}=\binom{u(0)}{u^{\prime}(0)}=\binom{1}{0}$.
(b) Differentiate, $y_{1}^{\prime}=u^{\prime}(x)=y_{2}$ and $y_{2}^{\prime}=u^{\prime \prime}(x)$. Isolate $u^{\prime \prime}$ left in the equation $u^{\prime \prime}+2 u^{\prime}+5 u=$ $60 \sin (20 x)$, then reduce $y_{2}^{\prime}=u^{\prime \prime}(x)$ into $y_{2}^{\prime}=-2 u^{\prime}-5 u+60 \sin (20 x)=-2 y_{2}-5 y_{1}+60 \sin (20 x)$.
(c) Initial data $\vec{y}(0)=\binom{1}{0}$ was derived in part (a). The differential equation is derived from the scalar dynamical system in part (b), as follows.

$$
\begin{aligned}
\vec{y}^{\prime} & =\binom{y_{1}^{\prime}}{y_{2}^{\prime}} \\
& =\binom{y_{2}}{-5 y_{1}-2 y_{2}+60 \sin (20 x)} \\
& =\binom{y_{2}}{-5 y_{1}-2 y_{2}}+\binom{0}{60 \sin (20 x)} \\
& =\left(\begin{array}{rr}
0 & 1 \\
-5 & -2
\end{array}\right)\binom{y_{1}}{y_{2}}+\binom{0}{60 \sin (20 x)} \\
& =\left(\begin{array}{rr}
0 & 1 \\
-5 & -2
\end{array}\right) \vec{y}+\binom{0}{60 \sin (20 x)}
\end{aligned}
$$

(d) From calculus, polynomials and trigonometric function sine are infinitely differentiable. Therefore, in each of the variables x, y_{1}, y_{2} the components of \vec{f}, which are just the right sides of the dynamical system equations of part (b), are also infinitely differentiable.

The Algorithm applies to constant-coefficient homogeneous linear differential equations of order N, for example equations like

$$
y^{\prime \prime}+16 y=0, \quad y^{\prime \prime \prime}+4 y^{\prime \prime}=0, \quad \frac{d^{5} y}{d x^{5}}+2 y^{\prime \prime \prime}+y^{\prime \prime}=0 .
$$

1. Find the N th degree characteristic equation by Euler's substitution $y=e^{r x}$. For instance, $y^{\prime \prime}+16 y=0$ has characteristic equation $r^{2}+16=0$, a polynomial equation of degree $N=2$.
2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic equation. List the N roots according to multiplicity.
3. Construct N distinct Euler solution atoms from the list of roots. Then the general solution of the differential equation is a linear combination of the Euler solution atoms with arbitrary coefficients $c_{1}, c_{2}, c_{3}, \ldots$.
The solution space S of the differential equation is given by

$$
S=\operatorname{span}(\text { the } N \text { Euler solution atoms). }
$$

Examples: Constructing Euler Solution Atoms from roots.
Three roots $0,0,0$ produce three atoms $e^{0 x}, x e^{0 x}, x^{2} e^{0 x}$ or $1, x, x^{2}$.
Three roots $0,0,2$ produce three atoms $e^{0 x}, x e^{0 x}, e^{2 x}$.
Two complex conjugate roots $2 \pm 3 i$ produce two atoms $e^{2 x} \cos (3 x), e^{2 x} \sin (3 x) \|^{1}$
Four complex conjugate roots listed according to multiplicity as $2 \pm 3 i, 2 \pm 3 i$ produce four atoms $e^{2 x} \cos (3 x), e^{2 x} \sin (3 x), x e^{2 x} \cos (3 x), x e^{2 x} \sin (3 x)$.
Seven roots $1,1,3,3,3, \pm 3 i$ produce seven atoms $e^{x}, x e^{x}, e^{3 x}, x e^{3 x}, x^{2} e^{3 x}, \cos (3 x), \sin (3 x)$.
Two conjugate complex roots $a \pm b i(b>0)$ arising from roots of $(r-a)^{2}+b^{2}=0$ produce two atoms $e^{a x} \cos (b x), e^{a x} \sin (b x)$.

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.
(a) $y^{\prime \prime}+16 y^{\prime}=0$
(b) $y^{\prime \prime}+16 y=0$
(c) $y^{\prime \prime \prime \prime}+16 y^{\prime \prime}=0$
(d) $y^{\prime \prime}+16 y=0, y(0)=1, y^{\prime}(0)=-1$
(e) $y^{\prime \prime \prime \prime}+9 y^{\prime \prime}=0, y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1$
(f) The characteristic equation is $(r-2)^{2}\left(r^{2}-4\right)=0$.
(g) The characteristic equation is $(r-1)^{2}\left(r^{2}-1\right)\left((r+2)^{2}+4\right)=0$.
(h) The characteristic equation roots, listed according to multiplicity, are $0,0,0,-1,2,2,3+$ $4 i, 3-4 i$.

[^0]
Solutions to Problem 3

(a) $y^{\prime \prime}+16 y^{\prime}=0$ upon substitution of $y=e^{r x}$ becomes $\left(r^{2}+16 r\right) e^{r x}=0$. Cancel $e^{r x}$ to find the characteristic equation $r^{2}+16 r=0$. It factors into $r(r+16)=0$, then the two roots r make the list $r=0,-16$. The Euler solution atoms for these roots are $e^{0 x}, e^{-16 x}$. Report the general solution $y=c_{1} e^{0 x}+c_{2} e^{-16 x}=c_{1}+c_{2} e^{-16 x}$, where symbols c_{1}, c_{2} stand for arbitrary constants.
(b) $y^{\prime \prime}+16 y=0$ has characteristic equation $r^{2}+16=0$. Because a quadratic equation $(r-a)^{2}+b^{2}=0$ has roots $r=a \pm b i$, then the root list for $r^{2}+16=0$ is $0+4 i, 0-4 i$, or briefly $\pm 4 i$. The Euler solution atoms are $e^{0 x} \cos (4 x), e^{0 x} \sin (4 x)$. The general solution is $y=c_{1} \cos (4 x)+c_{2} \sin (4 x)$, because $e^{0 x}=1$.
(c) $y^{\prime \prime \prime \prime}+16 y^{\prime \prime}=0$ has characteristic equation $r^{4}+4 r^{2}=0$ which factors into $r^{2}\left(r^{2}+16\right)=0$ having root list $0,0,0 \pm 4 i$. The Euler solution atoms are $e^{0 x}, x e^{0 x}, e^{0 x} \cos (4 x), e^{0 x} \sin (4 x)$. Then the general solution is $y=c_{1}+c_{2} x+c_{3} \cos (4 x)+c_{4} \sin (4 x)$.
(d) $y^{\prime \prime}+16 y=0, y(0)=1, y^{\prime}(0)=-1$ defines a particular solution y. The usual arbitrary constants c_{1}, c_{2} are determined by the initial conditions. From part (b), $y=c_{1} \cos (4 x)+c_{2} \sin (4 x)$. Then $y^{\prime}=-4 c_{1} \sin (4 x)+4 c_{2} \cos (4 x)$. Initial conditions $y(0)=1, y^{\prime}(0)=-1$ imply the equations $c_{1} \cos (0)+c_{2} \sin (0)=1,-4 c_{1} \sin (0)+4 c_{2} \cos (0)=-1$. Using $\cos (0)=1$ and $\sin (0)=0$ simplifies the equations to $c_{1}=1$ and $4 c_{2}=-1$. Then the particular solution is $y=c_{1} \cos (4 x)+c_{2} \sin (4 x)=$ $\cos (4 x)-\frac{1}{4} \sin (4 x)$.
(e) $y^{\prime \prime \prime \prime}+9 y^{\prime \prime}=0, y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1$ is solved like part (d). First, the characteristic equation $r^{4}+9 r^{2}=0$ is factored into $r^{2}\left(r^{2}+9\right)=0$ to find the root list $0,0,0 \pm 3 i$. The Euler solution atoms are $e^{0 x}, x e^{0 x}, e^{0 x} \cos (3 x), e^{0 x} \sin (3 x)$, which implies the general solution $y=c_{1}+c_{2} x+c_{3} \cos (3 x)+c_{4} \sin (3 x)$. We have to find the derivatives of y : $y^{\prime}=c_{2}-3 c_{3} \sin (3 x)+3 c_{4} \cos (3 x), y^{\prime \prime}=-9 c_{3} \cos (3 x)-9 c_{4} \sin (3 x), y^{\prime \prime \prime}=27 c_{3} \sin (3 x)-27 c_{4} \cos (3 x)$. The initial conditions give four equations in four unknowns $c_{1}, c_{2}, c_{3}, c_{4}$:

$$
\begin{aligned}
& c_{1}+c_{2}(0)+c_{3} \cos (0)+c_{4} \sin (0)=0, \\
& c_{2}-3 c_{3} \sin (0)+3 c_{4} \cos (0)=0, \\
& -9 c_{3} \cos (0)-9 c_{4} \sin (0)=1 \text {, } \\
& 27 c_{3} \sin (0)-27 c_{4} \cos (0)=1 \text {, }
\end{aligned}
$$

which has invertible coefficient matrix $\left(\begin{array}{rrrr}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & -9 & 0 \\ 0 & 0 & 0 & -27\end{array}\right)$ and right side vector $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$. The solution is $c_{1}=c_{2}=1 / 9, c_{3}=-1 / 9, c_{4}=-1 / 27$. Then the particular solution is $y=c_{1}+c_{2} x+$ $c_{3} \cos (3 x)+c_{4} \sin (3 x)=\frac{1}{9}+\frac{1}{9} x-\frac{1}{9} \cos (3 x)-\frac{1}{27} \sin (3 x)$
(f) The characteristic equation is $(r-2)^{2}\left(r^{2}-4\right)=0$. Then $(r-2)^{3}(r+2)=0$ with root list $2,2,2,-2$ and Euler atoms $e^{2 x}, x e^{2 x}, x^{2} e^{2 x}, e^{-2 x}$. The general solution is a linear combination of these four atoms.
(g) The characteristic equation is $(r-1)^{2}\left(r^{2}-1\right)\left((r+2)^{2}+4\right)=0$. The root list is $1,1,1,-1,-2 \pm$ $2 i$ with Euler atoms $e^{x}, x e^{x}, x^{2} e^{x}, e^{-x}, e^{-2 x} \cos (2 x), e^{-2 x} \sin (2 x)$. The general solution is a linear combination of these six atoms.
(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0, -1, 2, 2, 3+ $4 i, 3-4 i$. Then the Euler solution atoms are $e^{0 x}, x e^{0 x}, x^{2} e^{0 x}, e^{-x}, e^{2 x}, x e^{2 x}, e^{3 x} \cos (4 x), e^{3 x} \sin (4 x)$. The general solution is a linear combination of these eight atoms.

[^0]: ${ }^{1}$ The Reason: $\cos (3 x)=\frac{1}{2} e^{3 x i}+\frac{1}{2} e^{-3 x i}$ by Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$. Then $e^{2 x} \cos (3 x)=\frac{1}{2} e^{2 x+3 x i}+$ $\frac{1}{2} e^{2 x-3 x i}$ is a linear combination of exponentials $e^{r x}$ where r is a root of the characteristic equation. Euler's substitution implies $e^{r x}$ is a solution, so by superposition, so also is $e^{2 x} \cos (3 x)$. Similar for $e^{2 x} \sin (3 x)$.

