Sample Quiz 8

Sample Quiz 8, Problem 1. RLC-Circuit

The Problem. Suppose $E = 100 \sin(20t)$, L = 5 H, $R = 250 \Omega$ and C = 0.002 F. The model for the charge Q(t) is $LQ'' + RQ' + \frac{1}{C}Q = E(t)$.

- (a) Differentiate the charge model and substitute $I = \frac{dQ}{dt}$ to obtain the current model $5I'' + 250I' + 500I = 2000 \cos(20t)$.
- (b) Find the reactance $S = \omega L \frac{1}{\omega C}$, where $\omega = 20$ is the input frequency, the natural frequency of $E = 100 \sin(20t)$ and $E' = 2000 \cos(20t)$.
- (c) Substitute $I = A\cos(20t) + B\sin(20t)$ into the current model (a) and solve for $A = \frac{-12}{109}$, $B = \frac{40}{109}$. Then the steady-state current is

$$I(t) = A\cos(20t) + B\sin(20t) = \frac{-12\cos(20t) + 40\sin(20t)}{109}$$

(d) Write the answer in (c) in phase-amplitude form $I = I_0 \sin(20t - \delta)$ with $I_0 > 0$ and $\delta \ge 0$. Then compute the **time lag** δ/ω .

Answers: $I_0 = \frac{4}{\sqrt{109}}, \ \delta = \arctan(3/10), \ \delta/\omega = 0.01457.$

References

Course slides on Electric Circuits. Edwards-Penney Differential Equations and Boundary Value Problems, sections 3.4, 3.5, 3.6, 3.7.

Solutions to Problem 1

Problem 1(a) Start with $5Q'' + 250Q' + 500Q = 100\sin(20t)$. Differentiate across to get $5Q''' + 250Q'' + 500Q' = 2000\cos(20t)$. Change Q' to I.

Problem 1(b) S = (20)(5) - 1/(20 * 0.002) = 75

Problem 1(c) It helps to use the differential equation u'' + 400u = 0 satisfied by both $u_1 = \cos(20t)$ and $u_2 = \sin(20t)$. Functions u_1, u_2 are Euler solution atoms, hence independent. Along the solution path, we'll use $u'_1 = -20\sin(20t) = -20u_2$ and $u'_2 = 20\cos(20t) = 20u_1$. The arithmetic is simplified by dividing the equation first by 5. We then substitute $I = Au_1 + Bu_2$.

 $I'' + 50I' + 100I = 400\sin(20t)$ $A(u''_1 + 50u'_1 + 100u_1) + B(u''_2 + 50u'_2 + 100u_2) = 400\sin(20t)$ $A(-400u_1 + 50(-20u_2) + 100u_1) + B(-400u_2 + 50(20u_1) + 100u_2) = 400\sin(20t)$ $(-400A + 100A + 1000B)u_1 + (-1000A - 400B + 100B)u_2 = 400u_2$

By independence of u_1, u_2 , coefficients of u_1, u_2 on each side of the equation must match. The linear algebra property is called *unique representation of linear combinations*. This implies the 2×2 system of equations

$$\begin{array}{rcrcrcrcrcrc} -300A & + & 1000B & = & 0, \\ -1000A & - & 300B & = & 400. \end{array}$$

The solution by Cramer's rule (the easiest method) is A = -12/109, B = 40/109. Then the steady-state current is

$$I(t) = A\cos(20t) + B\sin(20t) = \frac{-12\cos(20t) + 40\sin(20t)}{109}.$$

The **steady-state current** is defined to be the sum of those terms in the general solution of the differential equation that remain after all terms that limit to zero at $t = \infty$ have been removed. The logic is that only these terms contribute to a graphic or to a numerical calculation after enough time has passed (as $t \to \infty$).

Problem 1(d) Let $\cos(\delta) = B/I_0, \sin(\delta) = -A/I_0, I_0 = \sqrt{A^2 + B^2}$. Use the trig identity $\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$

to rearrange the current formula as follows:

$$I(t) = A\cos(20t) + B\sin(20t) = I_0(\sin(20t)\cos(\delta) - \sin(\delta)\cos(20t)) = I_0\sin(20t - \delta).$$

Compute $I_0 = \sqrt{A^2 + B^2} = \frac{4}{\sqrt{109}}$. Compute $\tan(\delta) = \frac{\sin \delta}{\cos \delta} = -A/B = 12/40$. Then $\delta = \arctan(12/40)$ and finally $\delta/\omega = \arctan(3/10)/20 = 0.01457$.

Another method, using Edwards-Penney Section 3.7: Compute the impedance $Z = \sqrt{R^2 + S^2} = \sqrt{250^2 + 75^2} = \sqrt{68125} = 25\sqrt{109}$ and then $I_0 = E_0/Z = 4/\sqrt{109}$. The phase $\delta = \arctan(S/R) = \arctan(75/250) = \arctan(3/10)$. Then the time lag is $\delta/\omega = \frac{\arctan(0.3)}{20} = 0.01457$.

Sample Quiz 8, Problem 2. Picard's Theorem and RLC-Circuit Models

Picard-Lindelöf Theorem. Let $\vec{f}(x, \vec{y})$ be defined for $|x - x_0| \le h$, $\|\vec{y} - \vec{y}_0\| \le k$, with \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ continuous. Then for some constant H, 0 < H < h, the problem

$$\begin{cases} \vec{y}'(x) &= \vec{f}(x, \vec{y}(x)), \quad |x - x_0| < H, \\ \vec{y}(x_0) &= \vec{y}_0 \end{cases}$$

has a unique solution $\vec{y}(x)$ defined on the smaller interval $|x - x_0| < H$.

The Problem. The second order problem

(1)
$$\begin{cases} u'' + 2u' + 5u = 60\sin(20x), \\ u(0) = 1, \\ u'(0) = 0 \end{cases}$$

is an *RLC*-circuit charge model, in which the variables have been changed. The variables are time x in seconds and charge u(x) in coulombs. Coefficients in the equation represent an inductor L = 1 H, a resistor $R = 2\Omega$, a capacitor C = 0.2 F and a voltage input $E(x) = 60 \sin(20x)$.

The several parts below detail how to convert the scalar initial value problem into a vector problem, to which Picard's vector theorem applies. Please fill in the missing details.

(a) The conversion uses the **position-velocity substitution** $y_1 = u(x), y_2 = u'(x)$, where y_1, y_2 are the invented components of vector \vec{y} . Then the initial data u(0) = 1, u'(0) = 0 converts to the vector initial data

$$\vec{y}(0) = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

(b) Differentiate the equations $y_1 = u(x), y_2 = u'(x)$ in order to find the scalar system of two differential equations, known as a **dynamical system**:

$$y'_1 = y_2, \quad y'_2 = -5y_1 - 2y_2 + 60\sin(20x).$$

(c) The derivative of vector function $\vec{y}(x)$ is written $\vec{y}'(x)$ or $\frac{d\vec{y}}{dx}(x)$. It is obtained by componentwise differentiation: $\vec{y}'(x) = \begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix}$. The vector differential equation model of scalar system (??) is

(2)
$$\begin{cases} \vec{y}'(x) = \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix} \vec{y}(x) + \begin{pmatrix} 0 \\ 60\sin(20x) \end{pmatrix}, \\ \vec{y}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \end{cases}$$

(d) System (??) fits the hypothesis of Picard's theorem, using symbols

$$\vec{f}(x,\vec{y}) = \begin{pmatrix} 0 & 1\\ -5 & -2 \end{pmatrix} \vec{y}(x) + \begin{pmatrix} 0\\ 60\sin(20x) \end{pmatrix}, \quad \vec{y}_0 = \begin{pmatrix} 1\\ 0 \end{pmatrix}.$$

The components of vector function \vec{f} are continuously differentiable in variables x, y_1, y_2 , therefore \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{u}}$ are continuous.

Emile Picard

Solutions to Problem 2

(a)
$$\vec{y}(0) = \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} u(0) \\ u'(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(b) Differentiate, $y'_1 = u'(x) = y_2$ and $y'_2 = u''(x)$. Isolate u'' left in the equation $u'' + 2u' + 5u = 60 \sin(20x)$, then reduce $y'_2 = u''(x)$ into $y'_2 = -2u' - 5u + 60 \sin(20x) = -2y_2 - 5y_1 + 60 \sin(20x)$.

(c) Initial data $\vec{y}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ was derived in part (a). The differential equation is derived from the scalar dynamical system in part (b), as follows.

$$\vec{y}' = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix}$$

$$= \begin{pmatrix} y_2 \\ -5y_1 - 2y_2 + 60\sin(20x) \end{pmatrix}$$

$$= \begin{pmatrix} y_2 \\ -5y_1 - 2y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 60\sin(20x) \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 60\sin(20x) \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 60\sin(20x) \end{pmatrix}$$

(d) From calculus, polynomials and trigonometric function sine are infinitely differentiable. Therefore, in each of the variables x, y_1, y_2 the components of \vec{f} , which are just the right sides of the dynamical system equations of part (b), are also infinitely differentiable. Sample Quiz 8, Problem 3. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations of order N, for example equations like

$$y'' + 16y = 0, \quad y'''' + 4y'' = 0, \quad \frac{d^5y}{dx^5} + 2y''' + y'' = 0.$$

- 1. Find the Nth degree characteristic equation by Euler's substitution $y = e^{rx}$. For instance, y'' + 16y = 0 has characteristic equation $r^2 + 16 = 0$, a polynomial equation of degree N = 2.
- 2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic equation. List the N roots according to multiplicity.
- **3**. Construct N distinct Euler solution atoms from the list of roots. Then the general solution of the differential equation is a linear combination of the Euler solution atoms with arbitrary coefficients c_1, c_2, c_3, \ldots

The solution space S of the differential equation is given by

S =span(the N Euler solution atoms).

Examples: Constructing Euler Solution Atoms from roots.

Three roots 0, 0, 0 produce three atoms $e^{0x}, xe^{0x}, x^2e^{0x}$ or $1, x, x^2$.

Three roots 0, 0, 2 produce three atoms e^{0x}, xe^{0x}, e^{2x} .

Two complex conjugate roots $2 \pm 3i$ produce two atoms $e^{2x} \cos(3x), e^{2x} \sin(3x)$.¹

Four complex conjugate roots listed according to multiplicity as $2 \pm 3i$, $2 \pm 3i$ produce four atoms $e^{2x} \cos(3x)$, $e^{2x} \sin(3x)$, $xe^{2x} \cos(3x)$, $xe^{2x} \sin(3x)$.

Seven roots $1, 1, 3, 3, 3, \pm 3i$ produce seven atoms $e^x, xe^x, e^{3x}, xe^{3x}, x^2e^{3x}, \cos(3x), \sin(3x)$.

Two conjugate complex roots $a \pm bi$ (b > 0) arising from roots of $(r-a)^2 + b^2 = 0$ produce two atoms $e^{ax} \cos(bx)$, $e^{ax} \sin(bx)$.

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.

- (a) y'' + 16y' = 0
- (b) y'' + 16y = 0

(c)
$$y'''' + 16y'' = 0$$

(d)
$$y'' + 16y = 0, y(0) = 1, y'(0) = -1$$

(e) y'''' + 9y'' = 0, y(0) = y'(0) = 0, y''(0) = y'''(0) = 1

- (f) The characteristic equation is $(r-2)^2(r^2-4) = 0$.
- (g) The characteristic equation is $(r-1)^2(r^2-1)((r+2)^2+4) = 0$.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0, -1, 2, 2, 3 + 4i, 3 - 4i.

¹The Reason: $\cos(3x) = \frac{1}{2}e^{3xi} + \frac{1}{2}e^{-3xi}$ by Euler's formula $e^{i\theta} = \cos\theta + i\sin\theta$. Then $e^{2x}\cos(3x) = \frac{1}{2}e^{2x+3xi} + \frac{1}{2}e^{2x-3xi}$ is a linear combination of exponentials e^{rx} where r is a root of the characteristic equation. Euler's substitution implies e^{rx} is a solution, so by superposition, so also is $e^{2x}\cos(3x)$. Similar for $e^{2x}\sin(3x)$.

Solutions to Problem 3

(a) y'' + 16y' = 0 upon substitution of $y = e^{rx}$ becomes $(r^2 + 16r)e^{rx} = 0$. Cancel e^{rx} to find the **characteristic equation** $r^2 + 16r = 0$. It factors into r(r + 16) = 0, then the two roots r make the list r = 0, -16. The Euler solution atoms for these roots are e^{0x}, e^{-16x} . Report the general solution $y = c_1 e^{0x} + c_2 e^{-16x} = c_1 + c_2 e^{-16x}$, where symbols c_1, c_2 stand for arbitrary constants.

(b) y'' + 16y = 0 has characteristic equation $r^2 + 16 = 0$. Because a quadratic equation $(r-a)^2 + b^2 = 0$ has roots $r = a \pm bi$, then the root list for $r^2 + 16 = 0$ is 0 + 4i, 0 - 4i, or briefly $\pm 4i$. The Euler solution atoms are $e^{0x} \cos(4x), e^{0x} \sin(4x)$. The general solution is $y = c_1 \cos(4x) + c_2 \sin(4x)$, because $e^{0x} = 1$.

(c) y'''' + 16y'' = 0 has characteristic equation $r^4 + 4r^2 = 0$ which factors into $r^2(r^2 + 16) = 0$ having root list $0, 0, 0 \pm 4i$. The Euler solution atoms are $e^{0x}, xe^{0x}, e^{0x}\cos(4x), e^{0x}\sin(4x)$. Then the general solution is $y = c_1 + c_2x + c_3\cos(4x) + c_4\sin(4x)$.

(d) y'' + 16y = 0, y(0) = 1, y'(0) = -1 defines a particular solution y. The usual arbitrary constants c_1, c_2 are determined by the initial conditions. From part (b), $y = c_1 \cos(4x) + c_2 \sin(4x)$. Then $y' = -4c_1 \sin(4x) + 4c_2 \cos(4x)$. Initial conditions y(0) = 1, y'(0) = -1 imply the equations $c_1 \cos(0) + c_2 \sin(0) = 1, -4c_1 \sin(0) + 4c_2 \cos(0) = -1$. Using $\cos(0) = 1$ and $\sin(0) = 0$ simplifies the equations to $c_1 = 1$ and $4c_2 = -1$. Then the particular solution is $y = c_1 \cos(4x) + c_2 \sin(4x) = \cos(4x) - \frac{1}{4}\sin(4x)$.

(e) y'''' + 9y'' = 0, y(0) = y'(0) = 0, y''(0) = y'''(0) = 1 is solved like part (d). First, the characteristic equation $r^4 + 9r^2 = 0$ is factored into $r^2(r^2 + 9) = 0$ to find the root list $0, 0, 0 \pm 3i$. The Euler solution atoms are $e^{0x}, xe^{0x}, e^{0x}\cos(3x), e^{0x}\sin(3x)$, which implies the general solution $y = c_1 + c_2x + c_3\cos(3x) + c_4\sin(3x)$. We have to find the derivatives of y: $y' = c_2 - 3c_3\sin(3x) + 3c_4\cos(3x), y'' = -9c_3\cos(3x) - 9c_4\sin(3x), y''' = 27c_3\sin(3x) - 27c_4\cos(3x)$. The initial conditions give four equations in four unknowns c_1, c_2, c_3, c_4 :

$$c_1 + c_2(0) + c_3 \cos(0) + c_4 \sin(0) = 0,$$

$$c_2 - 3c_3 \sin(0) + 3c_4 \cos(0) = 0,$$

$$- 9c_3 \cos(0) - 9c_4 \sin(0) = 1,$$

$$27c_3 \sin(0) - 27c_4 \cos(0) = 1,$$

which has invertible coefficient matrix $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & -9 & 0 \\ 0 & 0 & 0 & -27 \end{pmatrix}$ and right side vector $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$. The

solution is $c_1 = c_2 = 1/9$, $c_3 = -1/9$, $c_4 = -1/27$. Then the particular solution is $y = c_1 + c_2x + c_3\cos(3x) + c_4\sin(3x) = \frac{1}{9} + \frac{1}{9}x - \frac{1}{9}\cos(3x) - \frac{1}{27}\sin(3x)$

(f) The characteristic equation is $(r-2)^2(r^2-4) = 0$. Then $(r-2)^3(r+2) = 0$ with root list 2, 2, 2, -2 and Euler atoms e^{2x} , xe^{2x} , x^2e^{2x} , e^{-2x} . The general solution is a linear combination of these four atoms.

(g) The characteristic equation is $(r-1)^2(r^2-1)((r+2)^2+4) = 0$. The root list is $1, 1, 1, -1, -2 \pm 2i$ with Euler atoms $e^x, xe^x, x^2e^x, e^{-x}, e^{-2x}\cos(2x), e^{-2x}\sin(2x)$. The general solution is a linear combination of these six atoms.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0, -1, 2, 2, 3 + 4i, 3-4i. Then the Euler solution atoms are $e^{0x}, xe^{0x}, x^2e^{0x}, e^{-x}, e^{2x}, xe^{2x}, e^{3x}\cos(4x), e^{3x}\sin(4x)$. The general solution is a linear combination of these eight atoms.