Picard-Lindelöf Theorem: The Vector Case

Emile Picard

Picard-Lindelöf Theorem. Let $\vec{f}(x, \vec{y})$ be defined for $\left|x-x_{0}\right| \leq h,\left\|\vec{y}-\vec{y}_{0}\right\| \leq$ \boldsymbol{k}, with \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ continuous. Then for some constant $\boldsymbol{H}, \mathbf{0}<\boldsymbol{H}<\boldsymbol{h}$, the problem

$$
\left\{\begin{array}{l}
\vec{y}^{\prime}(x)=\vec{f}(x, \vec{y}(x)),\left|x-x_{0}\right|<\boldsymbol{H}, \\
\vec{y}\left(x_{0}\right)=\vec{y}_{0}
\end{array}\right.
$$

has a unique solution $\overrightarrow{\boldsymbol{y}}(\boldsymbol{x})$ defined on the smaller interval $\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|<\boldsymbol{H}$.

Conversion of Second Order Scalar to a First Order System

Example. Transform the spring-mass system into a first order system in vector form.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=g(x), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let $\overrightarrow{\boldsymbol{u}}(\boldsymbol{x})=\binom{\boldsymbol{u}_{1}}{\boldsymbol{u}_{2}}=\binom{\boldsymbol{y}(\boldsymbol{x})}{\boldsymbol{y}^{\prime}(\boldsymbol{x})}$. Then $\boldsymbol{u}_{1}=\boldsymbol{y}(\boldsymbol{x}), \boldsymbol{u}_{2}=\boldsymbol{y}^{\prime}(\boldsymbol{x})$ and
$\vec{u}^{\prime}(x)=\binom{y^{\prime}(x)}{y^{\prime \prime}(x)}=\binom{y^{\prime}(x)}{g(x)-3 y^{\prime}(x)-2 y(x)}$,
because of the differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=g(x)$. Use $y(x)=u_{1}$, $y^{\prime}(x)=u_{2}$ to write
$\vec{u}^{\prime}(x)=\binom{y^{\prime}(x)}{g(x)-3 y^{\prime}(x)-2 y(x)}=\binom{u_{2}}{g(x)-3 u_{2}-2 u_{2}}$.
Define $\vec{f}(x, \vec{u})=\binom{u_{2}}{g(x)-3 u_{2}-2 u_{1}}$.
Then $\overrightarrow{\boldsymbol{u}}^{\prime}=\overrightarrow{\boldsymbol{f}}(\boldsymbol{x}, \overrightarrow{\boldsymbol{u}})$ is the vector form of the spring-mass system.
The initial condition is $\overrightarrow{\boldsymbol{u}}(0)=\binom{\boldsymbol{y}(0)}{\boldsymbol{y}^{\prime}(0)}=\binom{\boldsymbol{y}_{0}}{\boldsymbol{y}_{1}}$.

Definitions

\qquad
Definition. A vector function $\vec{f}(x, \vec{u})$ is said to be continuous on a set $\left|x-x_{0}\right|<h$, $\left\|\vec{u}-\vec{u}_{0}\right\|<\boldsymbol{H}$ provided for each $\left(\boldsymbol{x}_{1}, \vec{u}_{1}\right)$ in the set, we have

$$
\lim _{x \rightarrow x_{1}, \vec{u} \rightarrow \vec{u}_{1}} \vec{f}(x, \vec{u})=\vec{f}\left(x_{1}, \vec{u}_{1}\right) .
$$

Definition. Symbol $\partial \vec{f}(x, \vec{u}) / \partial \vec{u}$ is the Jacobian matrix of partial derivatives of vector \vec{f} with respect to the components of vector $\overrightarrow{\boldsymbol{u}}$. If $\vec{f}=\binom{f_{1}}{\boldsymbol{f}_{2}}$ and $\overrightarrow{\boldsymbol{u}}=\binom{\boldsymbol{u}_{1}}{\boldsymbol{u}_{2}}$, then

$$
\frac{\partial \vec{f}(x, \vec{u})}{\partial \vec{u}}=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} \\
\frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}}
\end{array}\right)
$$

Jacobians and Continuity

A Jacobian matrix is said to be continuous provided all of its entries are continuous. This implies:

Theorem. A Jacobian matrix of $\overrightarrow{\boldsymbol{f}}$ is continuous in variables $\boldsymbol{x}, \overrightarrow{\boldsymbol{u}}$ provided the partial derivatives $\boldsymbol{\partial} \overrightarrow{\boldsymbol{f}}(\boldsymbol{x}, \overrightarrow{\boldsymbol{u}}) / \boldsymbol{\partial} \boldsymbol{u}_{\boldsymbol{j}}, \boldsymbol{j}=\mathbf{1}, \ldots, \boldsymbol{n}$, are continuous in variables $\boldsymbol{x}, \overrightarrow{\boldsymbol{u}}$.

Example. The Jacobian matrix of $\vec{f}(x, \vec{u})=\binom{\boldsymbol{u}_{2}}{g(x)-3 u_{2}-2 u_{1}}$ is

$$
J=\left(\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right)
$$

The entries are polynomials, hence everywhere continuous. Therefore, $\boldsymbol{\partial} \vec{f}(\boldsymbol{x}, \vec{u}) / \boldsymbol{\partial} \vec{u}$ is continuous in variables $\boldsymbol{x}, \overrightarrow{\boldsymbol{u}}$.

