Picard–Lindelöf Theorem: The Vector Case

Emile Picard

Picard-Lindelöf Theorem. Let $\vec{f}(x, \vec{y})$ be defined for $|x - x_0| \le h$, $||\vec{y} - \vec{y}_0|| \le k$, with \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ continuous. Then for some constant H, 0 < H < h, the problem

$$\left(egin{array}{ll} ec{y}\,'(x) \ = \ ec{f}(x,ec{y}(x)), \ |x-x_0| < H, \ ec{y}(x_0) \ = \ ec{y}_0 \end{array}
ight.$$

has a unique solution $\vec{y}(x)$ defined on the smaller interval $|x - x_0| < H$.

Conversion of Second Order Scalar to a First Order System

Example. Transform the spring-mass system into a first order system in vector form.

$$y''+3y'+2y=g(x), \hspace{1em} y(0)=y_0, \hspace{1em} y'(0)=y_1.$$

Let
$$ec{u}(x)=igg(egin{array}{c} u_1 \ u_2 \ \end{pmatrix}=igg(egin{array}{c} y(x) \ y'(x) \ \end{pmatrix}$$
. Then $u_1=y(x), u_2=y'(x)$ and

$$ec{u}'(x) = igg(egin{array}{c} y'(x) \ y''(x) \end{pmatrix} = igg(egin{array}{c} y'(x) \ g(x) - 3y'(x) - 2y(x) \end{pmatrix},$$

because of the differential equation $y'' + 3y' + 2y = g(x)$. Use $y(x) = u_1,$
 $y'(x) = u_2$ to write
 $ec{u}'(x) = igg(egin{array}{c} y'(x) \ g(x) - 3y'(x) - 2y(x) \end{pmatrix} = igg(egin{array}{c} u_2 \ g(x) - 3u_2 - 2u_2 \end{pmatrix}.$

Define
$$\vec{f}(x, \vec{u}) = \begin{pmatrix} u_2 \\ g(x) - 3u_2 - 2u_1 \end{pmatrix}$$
.
Then $\vec{u'} = \vec{f}(x, \vec{u})$ is the vector form of the spring mass system.

The initial condition is $\vec{u}(0) = \begin{pmatrix} y(0) \\ y'(0) \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$.

Definitions

Definition. A vector function $\vec{f}(x, \vec{u})$ is said to be continuous on a set $|x - x_0| < h$, $\|\vec{u} - \vec{u}_0\| < H$ provided for each (x_1, \vec{u}_1) in the set, we have

$$\lim_{x o x_1,ec u o ec u_1}ec f(x,ec u)=ec f(x_1,ec u_1).$$

Definition. Symbol $\partial \vec{f}(x, \vec{u}) / \partial \vec{u}$ is the Jacobian matrix of partial derivatives of vector \vec{f} with respect to the components of vector \vec{u} . If $\vec{f} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$ and $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, then

Jacobians and Continuity _

A Jacobian matrix is said to be continuous provided all of its entries are continuous. This implies:

Theorem. A Jacobian matrix of \vec{f} is continuous in variables x, \vec{u} provided the partial derivatives $\partial \vec{f}(x, \vec{u}) / \partial u_j, j = 1, ..., n$, are continuous in variables x, \vec{u} .

Example. The Jacobian matrix of
$$\vec{f}(x, \vec{u}) = \begin{pmatrix} u_2 \\ g(x) - 3u_2 - 2u_1 \end{pmatrix}$$
 is $J = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$.

The entries are polynomials, hence everywhere continuous. Therefore, $\partial \vec{f}(x, \vec{u}) / \partial \vec{u}$ is continuous in variables x, \vec{u} .