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Differential E uations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebrais sufficient to solve many static problems, but the most interesting natural
phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f’Q) of the function f is the rate at which
the quantity x = fQ) is changing with respect to the independent variable t, it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

Example 1 The differential equation

x2 i~

involves both the unknown function xQ) and its first derivative x’Q) dx di. The differential
equation

d2 d
dx2 + + ~ — o

involves the unknown function y of the independent variable x and the first two derivatives
y’ and y” of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately the appropriate solution of that
equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3 + 7x2 — lix + 41 0. By contrast, in solving a differential equation, we
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Chapter 1 First-Order Differential Equations

are challenged to find the unknown functions y = y(x) for which an identity such
as y’(x) — 2xy(x)—that is, the differential equation

dy
= 2xy

holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

If C is a constant and

then
dy
dx

y(x) = Ce’2,

(zxe’ ) = ox) (Ce’2) = 2xy.

Thus every function y(x) of the form in Eq. (1) satisfies—and thus is
differential equation

≤~z2xy
dx

(1)

a solution of—the

(2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen
tial equation, one for each choice of the arbitrary constant C. By the method of separation of
variables (Section 1.4) it can be shown that every solution of the differential equation in (2)
is of the form in Eq. (1).

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time t, but we will see numerous examples in which some quantity other
than time is the independent variable.

Example 3 Newton’s law of cooling may be stated in this way: The time rate of change (the rate of
change with respect to timer) of the temperature TQ) of a body is proportional to the differ

( -TemperatureA ence between T and the temperature A of the surrounding medium (Fig. 1.1.1). That is,

/ 1 Temperature T

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4 Torricelli’s law implies that the time rare of change of the volume V of water in a draining
tank (Fig. 1.1.2) is proportional to the square root of the depth y of water in the tank:

dV
di

= k,J57, (4)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A,
then V = Ay, so dV/dt = A (dy/dt). In this case Eq. (4) takes the form

dy
di

= (5)

dT
(3)

where k is a positive constant. Observe that if T > A, then dT/dt <0, so the temperature is
a decreasing function of t and the body is cooling. But if T < A, then dT/dt >0,so that T
is increasing.

Thus the physical law is translated into a differential equation. If we are given the
values of k and A, we should be able to find an explicit formula for TQ), and then—with the
aid of this formula—we can predict the future temperature of the body.

Example 2

where h = k/A is a constant.
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Example 5 The time rate of change of a population PQ) with constant birth and death rates is, in many
simple cases, proportional to the size of the population. That is,

where Ic is the constant of proportionality.

(6)

VoLume V y

.1.

FIGURE 1.1.2. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water. in (6). We verify this assertion as follows:

P’(t) = Cke~” = k (Ce”) = kP(t)

for all real numbers t. Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation
dP/dt = kP has infinitely many different solutions of the form P(t) = Ce~”, one for
each choice of the “arbitrary” constant C. This is typical of differential equations.
It is also fortunate, because it may allow us to use additional information to select
from among all these solutions a particular one that fits the situation under study.

Example 6 Suppose that P(t) = Ce ‘is the population of a colony of bacteria at time t, that the pop
ulation at time t = 0 (hours, h) was 1000, and that the population doubled after I h. This
additional information about PQ) yields the following equations:

1000 = P(0) = Ce0 C,

2000 P(t) = C/.

C—12 C=6 C=3a
C;2I2~0~H3

FIGURE 1.1.3. Graphs of
PQ) Ce” withk = 1n2.

It follows that C = 1000 and that 1’ 2,sok = In 2 0.693147. With this value of Ic the
differential equation in (6) is

= (1n2)P (0.693147)P.

Substitution dfk = 1n2 and C = 1000 in Eq. (7) yields the particular solution

PQ) = 1000e02)l = 1000(è2)t = 1000 ~2’ (because e~2 = 2)

that satisfies the given conditions. We can use this particular solution to predict future popu
lations of the bacteria colony. For instance, the predicted number of bacteria in the population
after one and a half hours (when t = 1.5) is

Pfl.5) = 1000.23/2 2828.

The condition P (0) = 1000 in Example 6 is called an initial condition because
we frequently write differential equations for which t = 0 is the “starting time.”
Figure 1.1.3 shows several different graphs of the form P (t) = Ce1” with k = ln 2.
The graphs of all the infinitely many solutions of dP/dt = kP in fact fill the entire
two-dimensional plane, and no two intersect. Moreover, the selection of any one
point P0 on the P-axis amounts to a determination of P(0). Because exactly one
solution passes through each such point, we see in this case that an initial condition
P(0) = F1, determines a unique solution agreeing with the given data.

Let us discuss Example 5 further. Note first that each function of the form

PQ) = Ce~” (7)

is a solution of the differential equation

= kP
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Mathematical Models
Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.
3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Formulation terpretation

Mathematical Mathematical Mathematical
model analysis results

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari
ables (P and t) that describe the given situation, together with one or more equations
relating these variables (dP/dt = kP, P(0) — P0) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function oft). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP/dt = kP, P(O) = 1000, describing the bac
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function PQ) = 1000eO~2)t = 1000 2’ as our mathemat
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted r = 1.5 to obtain the predicted population of

2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P(t) = Cet” in Eq. (7) accurately
describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation tIP/cit = kP is inadequate
for modeling the world population—which in recent decades has “leveled off” as
compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.
With sufficient insight, we might formulate a new mathematical model including
a perhaps more complicated differential equation, one that takes into account such
factors as a limited food supply and the effect of increased population on birth and
death rates. With the formulation of this new mathematical model, we may attempt
to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If
we can solve the new differential equation, we get new solution functions to com
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pare with the real-world population. Indeed, a successful population analysis may
require refining the mathematical model still further as it is repeatedly measured
against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology

If C is a constant and y(x) = l/(C x), then

dy I
dx — (C—x)2 —y

ifx ~ C. Thus

y(x) = (8)

defines a solution of the differential equation

y (9)

on any interval of real numbers not containing the point x C. Actually, Eq. (8) defines a
one-pa rameterfamily of solutions of dy dx — 9, one for each value of the arbitrary constant
or “parameter” C. With C = 1 we get the particular solution

y(x)—
Ix

that satisfies the initial condition y(O) — I. As indicated in Fig. 1.1.5, this solution is contin
uous on the interval (—oo, I) but has a vertical asymptote at x 1.

x172 In x satisfies the differential equation

4x2y”+y=O (10)

for alIx >0.

y’(x) _~x_h/2lnx and y”(x) = kx3/2lnx 1x3 2

Then substitution into Eq. (10) yields

4x2y” + y = 4x2 (~x3 2 lnx — +x3/2) + 2xl~’2 xt 2 lnx 0

if x is positive, so the differential equation is satisfied for all x > 0.

Example 8 Verify that the function y(x) = Zr

SolutIon First we compute the derivatives
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The fact that we can write a differential equation is not enough to guarantee
that it has a solution. For example, it is clear that the differential equation

+ y2 = —l (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be
negative. For a variation on this theme, note that the equation

(y’)2+y2=O (12)

obviously has only the (real-valued) solution y(x) 0. In our previous examples
any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that
appears in it. The differential equation of Example 8 is of second order, those in
Examples 2 through 7 are first-order equations, and

~‘4) +x2y~~ +x5y = sinx

is a fourth-order equation. The most general form of an nth-order differential
equation with independent variable x and unknown function or dependent variable
y = y(x) is

F (x,y,y’,y” = o, (13)
y~ 11(1 —x) I .

Z~ where F is a specific real-valued function of ii + 2 variables.

— Our use of the word solution has been until now somewhat infonnal. To be
(0, I) X I precise, we say that the continuous function u = u(x) is a solution of the differential

— .__.— equation in (13) on the interval I provided that the derivatives ii’, u” ~~‘° exist

I onland

( F (x,u,u’,u” u°~) =

for all x in I. For the sake of brevity, we may say that u = u(x) satisfies the
s o ~ differential equation in (13) on I.

X Remark Recall from elementary calculus that a differentiable function on an open interval

FIGURE 1.1.5. The solution of is necessarily continuous there. This is why only a continuous function can qualify as a
,_ 2 / ~.... If . . . .

y — y uez’fleu uy yi~Xy — 1/\ 1 — X. (differentiable) solution of a differential equation on an interval.

Example 7
Continued

Example 9

Figure 1.1.5 shows the two “connected” branches of the graph y = 1/(1 — x). The left-hand
branch is the graph of a (continuous) solution of the differential equation y’ = y2 that is
defined on the interval (—oo, I). The right-hand branch is the graph of a different solution of
the differential equation that is defined (and continuous) on the different interval (1,00). So
the single formula y(x) = 1/0 — x) actually defines two different solutions (with different
domains of definition) of the same differential equation y’ = y2.

If A and B are constants and

y(x) Acos3x+Bsin3x, (14)

then two successive differentiations yield

y’(x)= 3A in3x+3Bcos3x,

y”(x) = 9Acos3x 9Bsin3x = —9y(x)

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of
solutions of the second-order differential equation

y”+9y=0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions.
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Although the differential equations in (11) and (12) are exceptions to the gen
eral rule, we will see that an nth-order differential equation ordinarily has an ii-

parameter family of solutions—one involving ii different arbitrary constants or pa
ranieters.

In both Eqs. (11) and (12), the appearance of y’ as an implicitly defined func
tion causes complications. For this reason, we will ordinarily assume that any dif
ferential equation under study can be solved explicitly for the highest derivative that
appears; that is, that the equation can be written in the so-called normal form

= G (x,y,y’,y” y(fl I)), (16)

where 0 is a real-valued function of n + I variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
two or more independent variables, then partial derivatives are likely to be involved;
if they are, the equation is called a partial differential equation. For example, the
temperature u = u(x, t) of a long thin uniform rod at the point x at time t satisfies
(under appropriate simple conditions) the partial differential equation

du _kau
at — 8x2’

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1
through 8 we will be concerned only with ordinary differential equations and will
refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

= f(x,y). (17)

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied situation will be an initial value problem, con
sisting of a differential equation of the form in (17) together with an initial condi
tion y(xo) = yo. Note that we call y(xo) = yo an initial condition whether or not

= 0. To solve the initial value problem

dy (x,y), y(xo)=yo (18)
dx

means to find a differentiable function y = y(x) that satisfies both conditions in
Eq. (18) on some interval containing x0.

E ample 10 Given the solution y(x) 1 (C ) of the differential equation dy/dx = y2 discussed in
Example 7, solve the initial value problem

y2. y(l) = 2.

Solution We need only find a value of C so that the solution y(x) = 1/(C x) satisfies the initial
condition y(l) = 2. Substitution of the values x = I andy = 2 in the given solution yields

FIGURE 1.1.6. The three solutions
yi(x) = 3cos3x, Y2(X) = 2sin3x,
and y3(x) = —3cos3x +2sin3x of
the differential equation 3” + 9Y = 0.

2 = y(l)
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FIGURE 1.1.7. The solutions of
= y2 defined by

y(x)=21(3—2x).

so 2C — 2 = I, and hence C = ~. With this value of C we obtain the desired solution

2
y(x) ~-

— x = 3 — 2x

Figure 1.1.7 shows the two branches of the graph y = 2,/(3 — Zx). The left-hand branch is
the graph on ( oo ~) of the solution of the given initial value problem y’ = y2, y(l) 2.
The right-hand branch passes through the point (2, —2) and is therefore the graph on (~, oo)
of the solution of the different initial value problem y’ = 9, y(2) = —2.

The central question of greatest immediate interest to us is this: If we are given
a differential equation known to have a solution satisfying a given initial condition,
how do we actuallyfind or compute that solution? And, once found, what can we do
with it? We will see that a relatively few simple techniques—separation of variables
(Section 1.4), solution of linear equations (Section 1.5), elementary substitution
methods (Section 1.6)—are enough to enable us to solve a variety of first-order
equations having impressive applications.

~NI Problems
In Problems I through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re
spect to x.

1. y’=3x2;y=x3+7
2. y’+2y=0;y=3e Zr

3. y” + ‘Iy = 0; Yl = cos2x, Y2 = sin2x
4. y” = 9y; Yl = e3.T, Y2 = e3’
5. y’ =y+2e_X;y =ex_e~~
6. y” + 4/ + 4y = 0; yi = r2x, Y2 =

7. y”—2y’+2y =O;yi =eXcosx,y2 =exsinx
8. y”+y=3cos2x,y1 =cosx—cos2x,y2=sinx cos2x

9. y’ + 2xy2 = Q; y =
1 + x2

10. x2y”+xy’—y =lnx;yi =x—lnx,y2 =

I lnx
11. x2y” + Sxy’ + 4y = 0; y~ = —i. y~ = —~-

x

12. x2y” — xy’ + 2y = 0; yj = x cos(ln x), y~ = x sin(ln x)

In Problems 13 through 16, substitute y = e~ into the given
differential equation to determine all values of the constant r
for which y = e~ is a solution of the equation.

13. 3y’=2y 14. 4y”=y
15. y”+y’ 2y =0 16. 3y”+3y’—4y =0

In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con
stant C so that y (x) satisfies the given initial condition. Use a
computer or graphing calculator (if desired.) to sketch several
typical solutions of the given differential equation, and high
light the one that satisfies the given initial condition.

17. y’ + y = 0; y(x) = Ce_Sr, y(O) = 2
18. y’ = 2y; y(x) = Ce2X, y(0) = 3

19. y’ = y + I; y(x) = CeX — I, y(O) = 5

20. y’ = x — y; y(x) = Ce~ + x — 1, y(O) = 10

21. y’ + 3x2y = 0; y(x) = Cr’3, y(O) = 7
22. e’y’ = l;y(x) =ln(x+C),y(0) =0

23. + 3y = 2x5; y(x) = + CC3, y(2) = 1

24. xy’ — = x3; y(x) = x3(C + lnx), y(l) = 17
25. y’ = 3x2(y2 + I); y(x) = tan(x3 + C), y(0) = 1
26. y’ ytanx=cosx;y(x)=(x+C)cosx,y(ir)=0

In Problems 27 through 31, aflinction y = g(x) is described
by some geometric property of its graph. Write a differential
equation of the form dy/dx = f(x, y) having the function g as
its solution (or as one of its solutions).

27. The slope of the graph of g at the point (x, y) is the sum
ofx andy.

lnx
28. The line tangent to the graph of g at the point (x, y) inter

sects the x-axis at the point (x/2, 0).
29. Every straight line normal to the graph of g passes through

the point (0, 1). Can you guess what the graph of such a
function g might look like?

30. The graph of & is normal to every curve of the form
y = + k (k is a constant) where they meet.

31. The line tangent to the graph of g at (x, y) passes through
the point (—y, x).

In Problems 32 through 36, write in the manner of Eqs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P.

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv/dt of a Lamborghini is proportional
to the difference between 250 kmm and the velocity of the
car.

—5
x



;-~0
C=-4

38. y’ = y
40. (y’)2 + y2 = 1
42. y” + y = 0

1.1 Differential Equations and Mathematical Models 9

35. Jn a city having a fixed population of P persons, the time rodents, and their number is increasing at the rate of
rate of change of the number N of those persons who have dP/dt = 1 rodent per month when there are P 10 ro
heard a certain rumor is proportional to the number of dents. Based on the result of Problem 43, how long will it
those who have not yet heard the rumor, take for this population to grow to a hundred rodents? To

36. In a city with a fixed population of P persons, the time rate a thousand? What’s happening here?
of change of the number N of those persons infected with 46. Suppose the velocity v of a motorboat coasting in water
a certain contagious disease is proportional to the product satisfies the differential equation dy/dr = kv2. The mi-
of the number who have the disease and the number who tial speed of the motorboat is v (0) = 10 meters per sec
do not. ond (mis), and v is decreasing at the rate of I m/s2 when

v = 5 mis. Based on the result of Problem 43, long does
In Problems 37 through 42, determine by inspection at least it take for the velocity of the boat to decrease to 1 mIs? To
one solution of the given differential equation. That is, use m/s? When does the boat come to a stop?
your knowledge of derivatives to make an intelligent guess. 47. In Example 7 we saw that y(x) = l/(C — x) defines a
Then test your hypothesis. one-parameter family of solutions of the differential equa

37. y” = 0 tion dy/dx = 9. (a) Determine a value of C so that
39. xy’ + y = 3x2 y(10) = 10. (b) Is there a value of C such that y(0) = 0?
41. y’ + y = ex Can you nevertheless find by inspection a solution of

dy/dx = ,~,2 such that y(0) = 0? (c) Figure 1.1.8 shows
Problems 43 through 46 concern the differential equation typical graphs of solutions of the form y(x) = l/(C — x).

Does it appear that these solution curves fill the entire xy
dx —

kx2, plane? Can you conclude that, given any point (a,b) in
dt — the plane, the differential equation dy/dx = y2 has cx-

where k is a constant actly one solution y(x) satisfying the condition y(a) = b?
48. (a) Show that y (x) = Cx4 defines a one-parameter fam

43. (a) If k is a constant, show that a general (one-parameter) ily of differentiable solutions of the differential equation
solution of the differential equation is given by x(t) = xy’ = 4y (Fig. 1.1.9). (b) Show that
l/(C — ki), where C is an arbitrary constant.

(b) Determine by inspection a solution of the initial value ( —x~ if x < 0,
problem x’ = kx2, x(0) = 0. y(x) = x4 ifx ≥ 0

44. (a) Assume that k is positive, and then sketch graphs of —
solutions of x’ = kx2 with several typical positive defines a differentiable solution of xy’ 4y for all x, but is
values of x(0). not of the form y(x) = Cx4. (c) Given any two real num

(b) How would these solutions differ if the constant k ben a and b, explain why—in contrast to the situation in
were negative? part (c) of Problem 47—there exist infinitely many differ-

45. Suppose a population P of rodents satisfies the differen- entiable solutions of xy’ = 4y that all satisfy the condition
tial equation dP/dr = kP2. Initially, there are P(0) = 2 y(a) = b.

C=’-2 C- I C=0 C=t C=2 C=3

2

C=4

‘a
C=-3C=-2C=-l C=OC=l C=2

100
80
60 11111140
20

-20Alt80

— —5—4—3—2 I 0 1 2 3 4 5
x

flGURE 1.1.9. The graph y = Cx4 for
various values of C.

FIGURE 1.1.8. Graphs of solutions of the
equation dy/dx 9.
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This is a general solution of Eq. (1), meaning that it involves an arbitrary constant
C, and for every choice of C it is a solution of the differential equation in (1). If
0(x) is a particular antiderivative of f—that is, if G’(x) f(x)—then

y(x)=G(x)+C. (3)

The graphs of any two such solutions y’ (x) = 0(x) + C1 and y2(x) = 0(x) +
C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1 and
1.2.2. There we see that the constant C is geometrically the vertical distance be
tween the two curves y(x) = 0(x) and y(x) = G(x) + C.

To satisfy an initial condition y(xo) = y~, we need only substitute x = x0 and
y — Yo into Eq. (3) to obtain yo = G(xo) + C, so that C = yo — 0(xo). With this
choice of C, we obtain the particular.solution of Eq. (1) satisfying the initial value
problem

dx f(x), y(xo)=yo.
We will see that this is the typical pattern for solutions of first-order differential

equations. Ordinarily, we will first find a general solution involving an arbitrary
constant C. We can then attempt to obtain, by appropriate choice of C, a particular
solution satisfying a given initial condition y(xo) =

Remark As the term is used in the previous paragraph, a general solution of a first-order
differential equation is simply a one-parameter family of solutions. A natural question is
whether a given general solution contains every particular solution of the differential equa
tion. When this is known to be true, we call it the general solution of the differential equation.
For example, because any two antiderivatives of the same function f(x) can differ only by a
constant, it follows that every solution of Eq. (I) is of the form in (2). Thus Eq. (2) serves to
define the general solution of (1).

Solve the initial value problem

2x+3, y(l)=2.

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields the
general solution

y(x) = f(2x + 3) dx = x2 + 3x + C.

Figure 1.2.3 shows the graph y = x2 + 3x + C for various values of C. The particular solution
we seek corresponds to the curve that passes through the point (t, 2), thereby satisfying the
initial condition

y(l) = (19 + 3(1) + C 2.
It follows that C = 2, so the desired particular solution is

Inte rals as General and Particular Solutions
The first-order equation dy/dx = f(x, y) takes an especially simple form if the
right hand-side function f does not actually involve the dependent variable y, so

dy = f(x). (1)
x

In this special case we need only integrate both sides of Eq. (1) to obtain

- y~x)=ff(x)dx+C. (2)

C= 3

0

2

3

44 3 2 I 0 1 2 3 4

FIGURE 1.2.1. Graphs of
y = ~x2+C for various values of C.

dy

-6

FIGURE 1.2.2. Graphs of
y = sinx + C for various values of C.

Exemple 1

y(x) = x2 + 3x —2.



1.2 Integrals as General and Particular Solutions 11

4 Second-order equations. The observation that the special first-order equation
\\ ~\ I I ii dy/dx = f(x) is readily solvable (provided that an antiderivative off can be found)2 ~ , / ,‘ extends to second-order differential equations of the special form

0

: ~ ~! . d~y . (4)
6 \~ in which the function g on the nght-hand side involves neither the dependent van

able y nor its derivative dy/dx. We simply integrate once to obtain

10 d
6 -4 -2 0 2 4 j =fy”(x)dx =fg(x)dx =

FIGURE 1.2.3. Solution curves for
the differential equation in Example I. where G is an antiderivative of g and C~ is an arbitrary constant. Then another

integration yields

Y(X)=JY’(X)dXf[G(X)+Ci]dX=fG(X)dX+CiX+C2.

where C2 is a second arbitrary constant. In effect, the second-order differential
equation in (4) is one that can be solved by solving successively the first-order
equations

dv dy
and

Velocity and Acceleration
Direct integration is sufficient to allow us to solve a number of important problems
concerning the motion of a particle (or mass point) in terms of the forces acting
on it. The motion of a particle along a straight line (the x-axis) is described by its
position function

x = fit) (5)
giving its x-coordinate at time t. The velocity of the particle is defined to be

v(t) = f’(t); that is, v = (6)

Its acceleration aQ) is aQ) = v’Q) = x”Q); in Leibniz notation,

dv d2x
(7)

Equation (6) is sometimes applied either in the indefinite integral form xQ) —

f vQ) dt or in the definite integral form

xQ) = xQo) + f v(s) ds,

which you should recognize as a statement of the fundamental theorem of calculus
(precisely because dx/dr = v).

Newton’s second law of motion says that if a force FQ) acts on the particle
and is directed along its line of motion, then

ma(t) = FQ); that is, F = ma, (8)
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where m is the mass of the particle. If the force F is known, then the equation
x”Q) = F(t)/m can be integrated twice to find the position function x(r) in terms
of two constants of integration. These two arbitrary constants are frequently deter
mined by the initial position x0 = x(O) and the initial velocity vo = u(0) of the
particle.

Constant acceleration. For instance, suppose that the force F, and therefore the
acceleration a = F/rn, are constant. Then we begin with the equation

dv
= a (a is a constant) (9)

and integrate both sides to obtain

v(t) =Jadt = at + C1.

We know that v = v0 when t = 0, and substitution of this information into the
preceding equation yields the fact that C1 = v0. So

dx
vQ) di —at+vo. (10)

A second integration gives

xQ) = f vQ) di = f(ai + vo) di = ~at2 + v0t + C2,

and the substitution t = 0, x = xo gives C2 = xo. Therefore,

x(i) = ~at2 + vot + xo. (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (11) the position, of
the particle at any time t in terms of its constant acceleration a, its initial velocity
vo, and its initial position x0.

Example 2 A lunar lander is falling freely toward the surface of the moon at a speed of 450 meters per
second (m s). Its retrorockets, when fired, provide a constant deceleration of 2.5 meters per
second per second (m/s2) (the gravitational acceleration produced by the moon is assumed
to be included in the given deceleration). At what height above the lunar surface should the
retrorockets be activated to ensure a “soft touchdown” (v = 0 at impact)?

Solution We denote by xQ) the height of the lunar lander above the surface, as indicated in Fig. 1.2.4.
We let j 0 denote the time at which the retrorockets should be fired. Then uo = 450
(m s, negative because the height xQ) is decreasing), and a = +2.5, because an upward
thrust increases the velocity v (although it decreases the speed lvi). Then Eqs. (10) and (11)
become

vQ) = 2.5t —450 (12)
a and

xQ) 1.25t2 — 450i + x~, (13)
Lunar surface where x0 is the height of the lander above the lunar surface at the time I = 0 when the

retrorockets should be activated.
FIGURE 1.2.4. The lunar lander of From Eq. (12) we see that u = 0 (soft touchdown) occurs when I = 450/2.5 = 180 5

Example 2. (that is, 3 minutes); then substitution oft = 180, x = 0 into Eq. (13) yields

0— (1.25)080)2 + 450(180) = 40,500

meters—that is, x~ = 40.5 km 251 miles. Thus the retrorockets should be activated when
the lunar lander is 40.5 kilometers above the surface of the moon, and it will touch down
softly on the lunar surface after 3 minutes of decelerating descent.
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Physical Units

Numerical work requires units for the measurement of physical quantities such as
distance and time. We sometimes use ad hoc units—such as distance in miles or
kilometers and time in hours—in special situations (such as in a problem involving
an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second
(mks) unit systems are used more generally in scientific and engineering problems.
In fact, fps units are commonly used only in the United States (and a few other
countries), while mks units constitute the standard international system of scientific
units.

fps units mks units

Force pound (Ib) newton (N)
Mass slug kilogram (kg)
Distance foot (if) meter (m)
Time second (s) second (s)
g 32 ft/s2 9.8 n’ds2

The last line of this table gives values for the gravitational acceleration g at
the surface of the earth. Although these approximate values will suffice for most
examples and problems, more precise values are 9.7805 rn/s2 and 32.088 ft/s2 (at
sea level at the equator).

Both systems are compatible with Newton’s second law F = ma. Thus 1 N is
(by definition) the force required to impart an acceleration of 1 rn/s2 to a mass of 1
kg. Similarly, I slug is (by definition) the mass that experiences an acceleration of
I ft/s2 under a force of 1 lb. (We will use mks units in all problems requiring mass
units and thus will rarely need slugs to measure mass.)

Inches and centimeters (as well as miles and kilometers) also are commonly
used in describing distances. For conversions between fps and mks units it helps to
remember that

1 in. = 2.54cm (exactly) and 1 lb 4.448 N.

For instance,

1 ft = 12 in. x 2.54~ = 30.48 cm,
in.

and it follows that

I mi = 5280 ft x 30.48~ = 160934.4 cm 1.609 km.

Thus a posted U.S. speed limit of 50 mi/h means that—in international terms—the
legal speed limit is about 50 x 1.609 80.45 km/h.

Vertical Motion with Gravitational cceleration

The weight W of a body is the force exerted on the body by gravity. Substitution of
a = g and F = W in Newton’s second law F = ma gives

W=mg (14)
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for the weight W of the mass m at the surface of the earth (where g 32 ft/s2 9.8
m/s2). For instance, a mass of m = 20 kg has a weight of W = (20 kg)(9.8 m/s2) =

196 N. Similarly, a mass m weighing 100 pounds has inks weight

W = (100 lb)(4.448 N/lb) — 444.8 N,

so its mass is
W 444.8N

2~45.4kg.
g 9.8m/s

To discuss vertical motion it is natural to choose the y-axis as the coordinate
system for position, frequently with y = 0 corresponding to “ground level.” If we
choose the upward direction as the positive direction, then the effect of gravity on a
vertically moving body is to decrease its height and also to decrease its velocity v —

dy/cit. Consequently, if we ignore air resistance, then the acceleration a = dy/cit of
the body is given by

= -g. (15)

This acceleration equation provides a starting point in many problems involving
vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity
and height formulas

vQ) = —gt + vo (16)
and

yQ) = —~gt2 + vot Ye. (17)

Here, Ye denotes the initial (t = 0) height of the body and vo its initial velocity.

Example 3 (a) Suppose that a ball is thrown straight upward from the ground (Ye = 0) with initial
velocity vo = 96 (ft/s, so we use g = 32 ft/s2 in fps units). Then it reaches its maximum
height when its velocity (Eq. (16)) is zero,

u(t) 32t 96 0,

and thus when t = 3 s. Hence the maximum height that the ball attains is

y(3) = . 32 . 3~ + 96~3 + 0 = 144 (ft)

(with the aid of Eq. (17)).
(b) If an arrow is shot straight upward from the ground with initial velocity v0 = 49 (m/s,
so we use g = 9.8 rn/s2 in inks units), then it returns to the ground when

y(t) = —~ . (9.8)12 + 491 = (4.9)t(—r + 10) = 0,
y-aXlS and thus after lOs in the air.

A Swimmer’s Problem
Figure 1.2.5 shows a northward-flowing river of width w = 2a. The lines x —

xaXis represent the banks of the river and the Y-axis its center. Suppose that the velocity

yR at which the water flows increases as one approaches the center of the river, and
indeed is given in terms of distance x from the center by

(18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,
where ~R = vo, and that ~R = 0 at each riverbank.

( a,O) (a, 0)

FIGURE 1.23. A swimmer’s
problem (Example 4).



Problems

yR
tana = —

dyvo(1 ~

dxvsk a2

y(x)=f(3 12x2)dx=3x—4x3+C

for the swimmer’s trajectory. The initial condition y (—i) = 0 yields C = 1, so

Then

y(x) = 3x — 4x3 + I

so the swimmer drifts 2 miles downstream while he swims I mile across the river.

In Problems 1 through 10, find a function y = f(x) satisfy
ing the given differential equation and the prescribed initial
condition.

1. ~=2x+1;y(0)=3

2. ~L=(x_2)2;y(2)=l

3. = ,Ji~ y(4) = 0

dy 1
4.

dy ______

5. j-= ~,,_......;yc2)= I

dy
6. ~— =x’1x2+9;y(—4)=0

dy 107. —= ;y(o)=o
dx x2+I

In Problems 11 through 18, find the position function x(t) of a
moving particle with the given acceleration a(t), initial posi
tion xo x(0), and initial velocity v~ v(0).

11. a(t) 50, ~ = 10, xo = 20

12. a(t) = —20, v~ = —15, xo = 5

13. a(t) = 3t, vo = 5, xo = 0

14. a(t) = 2t + 1, vo = —7, xcj = 4

15. a(t) = 4(t + 3)2 ~ = —l,xo =

16. a(t)=

17. a(t) (t 1)~ ,vo = 0, xo = 0

18. a(t) = 50 sin 5t, vo = —10, xci 8

In Problems 19 through 22, a particle starts at the origin and
travels along the x-axis with the velocity function vQ) whose
graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph
of the resulting position function x (t) for 0 S t S 10.

1.2 Integrals as General and Particular Solutions 15

Suppose that a swimmer starts at the point (—a, 0) on the west bank and swims
due east (relative to the water) with constant speed y~. As indicated in Fig. 1.2.5, his
velocity vector (relative to the riverbed) has horizontal component ys and vertical
component vR~ Hence the swimmer’s direction angle a is given by

Because Lana = dy/dx, substitution using (18) gives the differential equation

Ex.mple 4

for the swimmer’s trajectoryy = y(x) as he crosses the river.

(19)

Suppose that the river is I mile wide and that its midstream velocity is vo = 9 mi/h. If the
swimmer’s velocity is v5 = 3 mi/h, then Eq. (19) takes the form

c 3(l_4x2).

Integration yields

8. ~2~.=cos2x;y(0)=I
dx

____ i~. f2. =xe~;y(0) =
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FIGURE 1.2.6. Graph of the
velocity function u (1) of Problem 19.

20. 10

21.

22.

8

6

4

2

0W—————
0 2 4 6 8 10

FIGURE 1.2.7. Graph of the
velocity function vQ) of Problem 20.

I0

8

6

2

0
0 2 4 6 8 10

FIGURE 1.2.8. Graph of the
velocity function v(t) of Problem 21.

23. What is the maximum height attained by the airow of part
(b) of Example 3?

24. A ball is dropped from the top of a building 400 ft high.
How long does it take to reach the ground? With what
speed does the ball strike the ground?

25. The brakes of a car are applied when it is moving at 100
km/h and provide a constant deceleration of 10 meters per
second per second (m/s2). How far does the car travel be
fore coming to a stop?

26. A projectile is fired straight upward with an initial veloc
ity of 100 rn/s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; (b) when it passes the
top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 m/s. It strikes
the ground with a speed of 60 m/s. How tall is the build
ing?

28. A baseball is thrown straight downward with an initial
speed of 40 ft/s from the top of the Washington Monu
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the baseball strike the
ground?

29. A diesel car gradually speeds up so that for the first 10
its acceleration is given by

= (0.12):~ + (0.6)i (ft/s2).
dt

If the car starts from rest (xo = 0, vo = 0), find the distance
it has traveled at the end of the first lOs and its velocity at
that time.

30. A car traveling at 60 mi/h (88 ft/s) skids 176 ft after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 rn before
it carne to a stop. The car in question is known to have
a constant deceleration of 20 m/s2 under these condi
tions. How fast—in km/h—was the car traveling when
the brakes were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km/h
when the brakes are applied. Assuming that the car has
the same constant deceleration, how far will it skid if it is
moving at 100 km/h when the brakes are applied?

33. On the planet Gzyx, a ball dropped from a height of 20 ft
hits the ground in 2 s. If a ball is dropped from the top of
a 200-ft-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur
face of the earth to a maximum height of 144 ft. How
high could this person throw the ball on the planet Gzyx
of Problem 33?

35. A stone is dropped from rest at an initial height h above
the surface of the earth. Show that the speed with which it
strikes the ground is v 2gh.

19. 10

4

0 2 4 6 8 10

FIGURE 1.2.9. Graph of the
velocity function u(t) of Problem 22.
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36. Suppose a woman has enough “spring” in her legs to jump
(on earth) from the ground to a height of 2.25 feet. If
she jumps straight upward with the same initial velocity
on the moon where the surface gravitational acceleration
is (approximately) 5.3 ftls2—how high above the surface
will she rise?

37. At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point
B. if the car reaches B at 12:50 P.M. with a velocity of
60 mi/h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with
constant acceleration along a straight road toward point C,
35 miles away. If the constantly accelerated car arrives at
C with a velocity of 60 mi/h, at what time does it arrive
at C?

39. If a = 0.5 mi and v0 = 9 mi/h as in Example 4, what must
the swimmer’s speed v~ be in order that he drifts only I
mile downstream as he crosses the river?

40. Suppose that a = 0.5 mi, v~ = 9 mi/h, and vç 3 mi/h
as in Example 4, but that the velocity of the river is given
by the fourth-degree function

yR = ~ (~ x4
a4

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifts as he crosses the
river.

Sb e Fields and Solution Curves

41. A bomb is dropped from a helicopter hovering at an alti
tude of 800 feet above the ground. From the ground di
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the bomb
is released. With what initial velocity should the projectile
be fired in order to hit the bomb at an altitude of exactly
400 feet?

42. A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph (mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h2. At
what height above the lunar surface should the astronauts
fire the retrorockets to insure a soft touchdown? (As in
Example 2, ignore the moon’s gravitational field.)

43. Arthur Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its alu
miaized sail provides it with a constant acceleration of
0.OOlg = 0.0098 m/s2. Suppose this spacecraft starts from
rest at time t = 0 and simultaneously fires a projectile
(straight ahead in the same direction) that travels at one-
tenth of the speed c = 3 x 10~ mis of light. How long will
it take the spacecraft to catch up with the projectile, and
how far will it have traveled by then?

44. A driver involved in an accident claims he was going only
25 mph. When police tested his car, they found that when
its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.

dy
dx

= f(x,y) (1)

Consider a differential equation of the form

where the right-hand function f(x, y) involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in (I) with re
spect to x, and hence write y(x) — f f(x, y(x)) dx + C. However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function y (x) itself, and therefore cannot be evaluated explic
itly. Actually, there exists no straightforward procedure by which a general differen
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as y’ = x2 + y2 cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the g~áphical and
numerical methods of this and later sections can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions
There is a simple geometric way to think about solutions of a given differential
equation y’ f(x, y). At each point (x, y) of the xy-plane, the value of f(x, y)
determines a slope m f(x, y). A solution of the differential equation is simply
a differentiable function whose graph y — y (x) has this “correct slope” at each
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point (x, y(x)) through which it passes—that is, y’(x) — f(x, y(x)). Thus a so
lution curve of the differential equation y’ = f(x, y)—the graph of a solution of
the equation—is simply a curve in the ~y-plane whose tangent line at each point
(x, y) has slope in = f(x, y). For instance, Fig. 1.3.1 shows a solution curve of
the differential equation y’ = x y together with its tangent lines at three typical
points.

y

(x1,y1)

(x3,y3)

IGURE 1.3.1. A solution curve for the differential equation
= x — y together with tangent lines having

slopem1 =x~ —Yl atthepoint(x1,y1);
slope m~ = — Y2 at the point (x2, y2); and
slope m3 = X3 — y~ at the point (x3, y3).

This geometric viewpoint suggests a graphical method for constructing ap
proximate solutions of the differential equation y’ — f(x, y). Through each of a
representative collection of points (x, y) in the plane we draw a short line segment
having the proper slope m = f(x, y). All these line segments constitute a slope
field (or a direction field) for the equation y’ = f(x, y).

Example 1 Figures 1.3.2 (a)—(d) show slope fields and solution curves for the differential equation

(2)

with the values k = 2, 0.5, —I, and 3 of the parameter k in Eq. (2). Note that each slope
field yields important qualitative information about the set of all solutions of the differential
equation. For instance, Figs. 1.3.2(a) and (b) suggest that each solution y(x) approaches ±00
as x —÷ +00 if k > 0, whereas Figs. 1.3.2(c) and (d) suggest that y(x) —* 0 as x —, +00
if k < 0. Moreover, although the sign of k determines the direction of increase or decrease
of y(x), its absolute value Iki appears to determine the rate of change of y(x). All this is
apparent from slope fields like those in Fig. 1.3.2, even without knowing that the general
solution of Eq. (2) is given explicitly by y(x) = Ce~’.

A slope field suggests visually the general shapes of solution curves of the
differential equation. Through each point a solution curve should proceed in such
a direction that its tangent line is nearly parallel to the nearby line segments of the
slope field. Starting at any initial point (a, b), we can attempt to sketch freehand an
approximate solution curve that threads its way through the slope field, following
the visible line segments as closely as possible.

Example 2 Construct a slope field for the differential equation y’ = x — y and use it to sketch an approx
imate solution curve that passes through the point (—4,4).

So u ion Figure 1.3.3 shows a table of slopes for the given equation. The numerical slope in = x — y
appears at the intersection of the horizontal x-row and the vertical y-column of the table. If
you inspect the pattern of upper-left to lower-right diagonals in this table, you can see that it
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~1

a
—4—3—2—I 0 I 2 3 4

4

a’

an
—4 —3 -2 —l 0 I 2 3 4

FIGURE 1.3.2(a) Slope fIeld and
solution curves for y’ = 2y.

FIGURE 1.3.2(b) Slope field and
solulion curves for y’ = (O.5)y.

FIGURE 1.32(c) Slope field and
solution curves for y’ = —y.

was easily and quickly constructed. (Of course, a more complicated function f(x, y) on the
right-hand side of the differential equation would necessitate more complicated calculations.)
Figure 1.3.4 shows the corresponding slope field, and Fig. 1.3.5 shows an approximate so
lution curve sketched through the point (—4, 4) so as to follow this slope field as closely as
possible. At each point it appears to proceed in the direction indicated by the nearby line
segments of the slope field.

Although a spreadsheet program (for instance) readily constructs a table of
slopes as in Fig. 1.3.3, it can be quite tedious to plot by hand a sufficient number

5
4
3
2

‘-0

—2
—3
—4
—5

—5

FIGURE 1.3.5. The solution curve
through (—4,4).

3

2

‘~0

—2

—3

~4—3 —2—I 0 I 2 3 4

x \y —4 —3 —2 —l o’ 1 2 3 4

a”

‘filial
—4 —3 —2 —I 0 I 2 3 4

.1

FIGURE 1.3.2(d) Slope field
and solution curves for y’ = —3y.

—4 0 —l —2 —3 —4 —5 —6 —7 —8

—3 1 0 —l —2 —3 —4 —5 —6 —7

—2 2 1 0 —l —2 —3 —4 —5 —6

—1 3 2 1 0 —l —2 —3 —4 —5

0 4 3 2 1 0 —l —2 —3 —4

1 5 4 3 2 1 0 —l —2 —3

2 6 5 4 3 2 1 0 —l —2

3 7 6 5 4 3 2 1 0 —l
4 8 7 6 5 4

FIGURE 1.3.3. Values of the slope y’ = x — y for —4 ~ x, y ~ 4.

2 1 0

5
I I \ I
I \ I \\—/
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I\\\ —/1/

\\\— 1/ / I
\\—/ I III
\—// III?
—, I I I I I I

~I~t
~\\—/ I/Il
.\—// III?
-—/11 liii

—5
—5 0 5 0

x

FIGURE 13.4. Slope field for y’ x — y

corresponding to the table of slopes in Fig. 1.3.3.
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of slope segments as in Fig. 1.3.4. However, most computer algebra systems in
dude commands for quick and ready construction of slope fields with as many line
segments as desired; such commands are illustrated in the application material for
this section. The more line segments are constructed, the more accurately solutionIn curves can be visualized and sketched. Figure 1.3.6 shows a “fine?’ slope field for
the differential equation y’ = x — y of Example 2, together with typical solution
curves treading through this slope field.

If you look closely at Fig. 1.3.6, you may spot a solution curve that appears~Eiii to be a straight line! Indeed, you can verify that the linear function y = x I is
a solution of the equation y’ = x — y, and it appears likely that the other solution
curves approach this straight line as an asymptote as x .-÷ +00. This inference

4 —3 —2 —1 0 i 2 3 4 illustrates the fact that a slope field can suggest tangible information about solutions
X that is not at all evident from the differential equation itself. Can you, by tracing the

FIGURE 1.3.6. Slope field and appropriate solution curve in this figure, infer that y(3) 2 for the solution y(x) of
typical solution curves tory’ = x y. the initial value problem y’ = x y, y( 4) — 4?

Applica ions of Slope Fells

The next two examples illustrate the use of slope fields to glean useful information
in physical situations that are modeled by differential equations. Example 3 is based
on the fact that a baseball moving through the air at a moderate speed v (less than
about 300 ft/s) encounters air resistance that is approximately proportional to v. If
the baseball is thrown straight downward from the top of a tall building or from a
hovering helicopter, then it experiences both the downward acceleration of gravity
and an upward acceleration of air resistance. If the y-axis is directed downward,
then the ball’s velocity v = dy/di and its gravitational acceleration g = 32 ft/s2 are
both positive, while its acceleration due to air resistance is negative. Hence its total
acceleration is of the form

dv
—j-=g—kv. (3)

A typical value of the air resistance proportionality constant might be k = 0.16.

Exam p1 Suppose you throw a baseball straight downward from a helicopter hovering at an altitude of
3000 feet. You wonder whether someone standing on the ground below could conceivably
catch it. In order to estimate the speed with which the ball will land, you can use your laptop’s
computer algebra system to construct a slope field for the differential equation

200 ~=32—0.l6v. (4)

The result is shown in Fig. 1.3.7, together with a number of solution curves correspond

5 ID 15 20 ~ ing to different values of the initial velocity v(0) with which you might throw the baseball
downward. Note that all these solution curves appear to approach the horizontal line u 200

FIGURE 1.3.7. Slope field and as an asymptote. This implies that—however you throw it—the baseball should approach the
typical solution curves for limiting velocity v = 200 ft/s instead of accelerating indefinitely (as it would in the absence
ii’ 32—0. 16v. of any air resistance). The handy fact that 60 mi/h = 88 ft/s yields

ft 6Omi/h mi
v = 200— x 136.36

s 88ft/s h

Perhaps a catcher accustomed to 100 mi/h fastballs would have some chance of fielding this
speeding ball.

Comment If the ball’s initial velocity is v(0) = 200, then Eq. (4) gives v’(0) = 32
(0. l6)(200) = 0, so the ball experiences no initial acceleration. Its velocity therefore remains
unchanged, and hence v(t) 200 is a constant “equilibrium solution” of the differential
equation. If the initial velocity is greater than 200, then the initial acceleration given by
Eq. (4) is negative, so the ball slows down as it falls. But if the initial velocity is less than
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200, then the initial acceleration given by (4) is positive, so the ball speeds up as it falls. It
therefore seems quite reasonable that, because of air resistance, the baseball will approach a
limiting velocity of 200 ft/s—whatever initial velocity it starts with. You might like to verify
that in the absence of air resistance this ball would hit the ground at over 300 mi/h.

In Section 2.1 we will discuss in detail the logistic differential equation

~[_kP(M—P) (5)

that often is used to model a population PQ) that inhabits an environment with
carrying capacity M. This means that M is the maximum population that this
environment can sustain on a long-term basis (in terms of the maximum available
food, for instance).

Eiampie 4 If we take k = 0.0004 and M = ISO, then the logistic equation in (5) takes the form

= 0.0004P(150 — P) = 0.06P — O.0004P2. (6)

ii
00 25 50 75

FiGURE 13.8. Slope field and
typical solution curves for

= O.06P — O.0004P2.

Example S (a) [Failure of existence~ The initial value problem

The positive term 0.06 P on the right in (6) corresponds to natural growth at a 6% annual rate
(with time t measured in years). The negative term —0.0004P2 represents the inhibition of
growth due to limited resources in the environment.

Figure 1.3.8 shows a slope field for Eq. (6), together with a number of solution curves
corresponding to possible different values of the initial population P(0). Note that all these
solution curves appear to approach the horizontal line P = 150 as an asymptote. This implies
that—whatever the initial population the population P (t) approaches the limiting popula

100 tion P = ISO ast —÷ co.

Comment If the initial population is P(0) = 150, then Eq. (6) gives

P’(0) = 0.0004050)050 — 150) = 0,

so the population experiences no initial (instantaneous) change. It therefore remains un
changed, and hence PQ) 150 is a constant “equilibrium solution” of the differential equa
tion. If the initial population is greater than 150, then the initial rate of change given by (6)
is negative, so the population immediately begins to decrease. But if the initial population is
less than 150, then the initial rate of change given by (6) is positive, so the population imme
diately begins to increase. It therefore seems quite reasonable to conclude that the population
will approach a limiting value of 150—whatever the (positive) initial population.

Existence and Uniqueness of Solutions

Before one spends much time attempting to solve a given differential equation, it
is wise to know that solutions actually exist. We may also want to know whether
there is only one solution of the equation satisfying a given initial condition—that
is, whether its solutions are unique.

y’ :~‘ ~~°~=° (7)

has no solution, because no solution y(x) = f(l/x) dx = In lxi + C of the differential equation
is defined at x = 0. We see this graphically in Fig. 1.3.9, which shows a direction field and
some typical solution curves for the equation y’ = l/x. It is apparent that the indicated
direction field “forces” all solution curves near the y-axis to plunge downward so that none
can pass through the point (0,0).
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b

y

FIGURE 1.3.11. The rectangle R
and x-interval I of Theorem I. and the
solution curve y y(x) through the
point (a,b).

2
\\\\ I/I, -

‘~,N.\\\ ///~‘~--
%%%~\\ ~ / ///~~-

~ ~ \ \o 09 ‘:

FIGURE 1.3.9. Direction field and typical
solution curves for the equation y’ = 1/x.

(b) [Failure of uniqueness] On the other hand, you can readily verify that the initial value
problem

y’=2.J57, y(O) 0 (8)
has the two different solutions yl(x) = x2 and y2(x) 0 (see Problem 27). Figure 1.3.10
shows a direction field and these two different solution curves for the initial value problem in
(8). We see that the curve yl(x) = x2 threads its way through the indicated direction field,
whereas the differential equation y’ = 2q5 specifies slope y’ = 0 along the i-axis Y2(X) = 0.

Example 5 illustrates the fact that, before we can speak of “the” solution of
an initial value problem, we need to know that it has one and only one solution.
Questions of existence and uniqueness of solutions also bear on the process of
mathematical modeling. Suppose that we are studying a physical system whose be
havior is completely determined by certain initial conditions, but that our proposed
mathematical model involves a differential equation not having a unique solution
satisfying those conditions. This raises an immediate question as to whether the
mathematical model adequately represents the physical system.

The theorem stated below implies that the initial value problem y’ = f(x, y),
y(a) = b has one and only one solution defined near the point x = a on the x-axis,
provided that both the function f and its partial derivative df/dy are continuous
near the point (a, b) in the xy-plane. Methods of proving existence and uniqueness
theorems are discussed in the Appendix.

THEOREM 1 ExIstence and Uniqueness of Solutions
Suppose that both the function f(x, y) and its partial derivative D~f(x, y) are
continuous on some rectangle R in the xy-plane that contains the point (a, b)
in its interior. Then, for some open interval I containing the point a, the initial
value problem

y(a)=b (9)

has one and only one solution that is defined on the interval I. (As illustrated in
Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle
R of continuity; see Remark 3 below.)

Remark I In the case of the differential equation dy/dx = —y of Example 1 and
Fig. 1.3,2(c), both the function f(x, y) = y and the partial derivative af/ay = —l are con-

I~J~

2%

;/ ~, ~, ~I ;1 :1 ;/ ~
‘‘‘‘‘I,,
‘II,,,,,,
‘‘‘‘‘I,’,
/ / / / /
I/I//I//I

—— ——------—
y2(x) = 0

0
I

FIGURE 1.3.10. Direction field and two
different solution curves for the initial value
problem y’ = 2~J37, y(O) = 0.

I’
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tinuous everywhere, so Theorem 1 implies the existence of a unique solution for any initial
data (a, b). Although the theorem ensures existence only on some open interval containing
x = a, each solution y(x) = Ce~’ actually is defined for all x.

Remark 2 In the case of the differential equation dy/dx = 2q51 of Example 5(b) and
Eq. (8), the function f(x, y) = 2.,j5i is continuous wherever y > 0, but the partial derivative
dJ’/8y = l/~J37 is discontinuous when y = 0, and hence at the point (0,0). This is why it is
possible for there to exist two different solutions yi(x) = x2 and y2(x) a 0, each of which
satisfies the initial condition y(O) = 0.

Remark 3 In Example 7 of Section 1.1 we examined the especially simple differential
equation dy dx y2. Here we have f(x, y) = 9 and af/ay = 2y. Both of these functions
are continuous everywhere in the xy-plane, and in particular on the rectangle —2 < x < 2,
o y 2. Because the point (0, 1) lies in the interior of this rectangle, Theorem 1 guarantees
a unique solution—necessarily a continuous function—of the initial value problem

= 9, y(O) = I (10)

on some open x-interval containing a = 0. Indeed this is the solution

y(x) =

that we discussed in Example 7. But y(x) = 1/0 — x) is discontinuous at x = l,so our unique
continuous solution does not exist on the entire interval —2 <x <2. Thus the solution interval

FIGURE 1.3.12. The solution curve I of Theorem I may not be as wide as the rectangle R where f and af/ay are continuous.
through the initial point (0, 1) leaves Geometrically, the reason is that the solution curve provided by the theorem may leave the
the rectangle R before it reaches the rectangle—wherein solutions of the differential equation are guaranteed to exist before it
right side of R. reaches the one or both ends of the interval (see Fig. 1.3.12).

The following example shows that, if the function f(x, y) and/or its partial
derivative af/ay fail to satisfy the continuity hypothesis of Theorem 1, then the
initial value problem in (9) may have either no solution or many—even infinitely
many—solutions.

Example 6 Consider the first-order differential equation

x~≥-~-=2y. (11)

Applying Theorem 1 with f(x, y) = 2y/x and af/ay = 2/x, we conclude that Eq. (11)
must have a unique solution near any point in the xy-plane where x 0 0. Indeed, we see
immediately by substitution in (11) that

y(x) = Cx2 (12)

satisfies Eq. (11) for any value of the constant C and for all values of the variable x. In
particular, the initial value problem

x9~=2y. y(O) 0 (13)

has infinitely many different solutions, whose solution curves are the parabolas y Cx2
illustrated in Fig. 1.3.13. (In case C = 0 the “parabola” is actually the x-axis y = 0.)

Observe that all these parabolas pass through the origin (0,0), but none of them passes
through any other point on the y-axis. It follows that the initial value problem in (13) has
infinitely many solutions, but the initial value problem

x~L=2y, y(0)=b (14)

0
x

(0,!,) (0,0)

FIGURE 1.3.13. There are infinitely
many solution curves through the point
(0,0), but no solution curves through
thepoint(O,b)ifb 00.

has no solution if b $0.
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Finally, note that through any point off the y-axis there passes only one of the parabolas
y Cx2. Hence, if a ~ 0, then the initial value problem

FIGURE 1.3.14. There are infinitely
many solution curves through the point
(1,—I).

in Problems 1 through 10, we have provided the slope field of
the indicated differential equation, together with one or more
solution curves. Sketch likely solution curves through the ad
ditional points marked in each slope field.

dy
1. —= y sinx

x~&=2y, y(a)=b
dx

dy
2. —=x+y

dx

(15)

x

has a unique solution on any interval that contains the point x = a but not the origin x = 0.
In summary, the initial value problem in (15) has

a unique solution near (a, b) if a 00;
no solution ifa = 0 but b 00;
infinitely many solutions if a = b = 0.

Still more can be said about the initial value problem in (15). Consider a
typical initial point off the y-axis—for instance the point (—1, 1) indicated in Fig.
1.3.14. Then for any value of the constant C the function defined by

x2 ifx<0,
y(x) = 2 (16)

Cx ifx>0

is continuous and satisfies the initial value problem

= 2y, y(—l) = 1. (17)

For a particular value of C, the solution curve defined by (16) consists of the left
half of the parabola y = x2 and the right half of the parabola y = Cx2. Thus the
unique solution curve near (—1,1) branches at the origin into the infinitely many
solution curves illustrated in Fig. 1.3.14.

We therefore see that Theorem 1 (if its hypotheses are satisfied) guarantees
uniqueness of the solution near the initial point (a, b), but a solution curve through
(a, b) may eventually branch elsewhere so that uniqueness is lost. Thus a solution
may exist on a larger interval than one on which the solution is unique. For instance,
the solution y(x) = x2 of the initial value problem in (17) exists on the whole x-axis,
but this solution is unique only on the negative x-axis —Co <x <0.
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FIGURE 1.3.17.
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FIGURE 1.3.24.

A

A ,nore detailed version of Theorem] says that, ifthejisnction
f(x, y) is continuous near the point (a, b), then at least one so
lution of the differential equation y’ = f(x, y) exists on some
open interval I containing the point x = a and, moreovei that
if in addition the partial derivative df/9y is continuous near
(a, b), then this solution is unique on some (perhaps smaller)
interval I. In Problems 11 through 20, determine whether ex
istence of at least one solution of the given initial value prob
lem is thereby guaranteed and, if so, whether uniqueness of
that solution is guaranteed.

11. = 2x~y~; yO) —1

12. ~=xlny; y(1)=1

13. = ~/ji; y(O) = I

14. ~=~/37; y(O)=0

15. = ,/yty; y(2) = 2

16. ,JY7; y(2) = 1

17.y~’=x I; y(O)=1

j~• y~’ x 1; y(l) 0

19. — ln(1 y2); y(O) — 0

20. x2 y2; y(O)=1

In Problems 2] and 22, first use the method of Example 2
to construct a slope field for the given differential equation.
Then sketch the solution curve corresponding to the given ini
tial condition. Finally, use this solution curve to estimate the
desired value of the solution y(x).

Problems 23 and 24 are like Problems 21 and 22, but now
use a computer algebra system to plot and print out a slope
fieldfor the given dtfferential equation. Ifyou wish (and know
how), you can check your manually sketched solution curve by
plotting it with the computer

23. y’=x2+y2—l, y(0)=O; y(2) ?

24. y’ = x + 1y2, y(—2) 0; y(2) 7

25. You bail out of the helicopter of Example 3 and pull the
ripcord of your parachute. Now k = 1.6 in Eq. (3), so
your downward velocity satisfies the initial value problem

dv
dt

=32 l.6v, v(O)=0.

In order to investigate your chances of survival, construct
a slope field for this differential equation and sketch the
appropriate solution curve. What will your limiting veloc
ity be? Will a strategically located haystack do any good?
How long will it take you to reach 95% of your limiting
velocity?

26. Suppose the deer population PQ) in a small forest satisfies
the logistic equation

= 0.0225P 0.0003P2.

Construct a slope field and appropriate solution curve to
answer the following questions: If there are 25 deer at
time t 0 and t is measured in months, how long will
it take the number of deer to double? What will be the
limiting deer population?

The next seven problems illustrate the fact that, if the hypothe
ses of Theorem 1 are not satisfied, then the initial value prob
lem y’ f(x, y), y(a) = b may have either no solutions,
finitely many solutions, or infinitely many solutions.

27. (a) Verify that if c is a constant, then the function defined
piecewise by

0
(x_c)2

9. =x2—y—2
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21. y’=x+y,
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satisfies the differential equation y’ = 2q5 for all x (in
cluding the point x = c). Construct a figure illustrating the
fact that the initial value problem y’ = 2.J51, y(O) 0 has
infinitely many different solutions. (b) For what values of
b does the initial value problem y’ = 2q51, y(O) — b have
(i) no solution, (ii) a unique solution that is defined for all

28. Verify that if Ic is a constant, then the function y(x) kx
satisfies the differential equation xy’ = y for all x. Con
struct a slope field and several of these straight line so
lution curves. Then determine (in terms of a and b) how
many different solutions the initial value problem xy’ = y,
y(a) = b has—one, none, or infinitely many.

29. Verify that if c is a constant, then the function defined
piecewise by

0 forxSc,
3(x c) forx>c

satisfies the differential equation y’ = 3y213 for all x. Can
you also use the “left half” of the cubic y = (x c)3 in
piecing together a solution curve of the differential equa
tion? (See Fig. 1.3.25.) Sketch a variety of such solution
curves. Is there a point (a,b) of the xy-plane such that
the initial value problem y’ = 3y2/3, y(a) = b has either
no solution or a unique solution that is defined for all x?
Reconcile your answer with Theorem I.

y
y=(x c)3

FIGURE 1.325. A suggestion for Problem 29.

30. Verify that if c is a constant, then the function defined
piecewise by

+1 ifxSc,
y(x)= cos(x c) ifc<x<c+’r,

I ifx~c+,r

satisfies the differential equation y’ = ~‘l — y2 for all x.
(Perhaps a preliminary sketch with c = 0 will be helpful.)
Sketch a variety of such solution curves. Then determine
(in terms of a and b) how many different solutions the ini
tial value problem y’ = — y2, y(a) = b has.

31. Carry out an investigation similar to that in Problem 30,
except with the differential equation y’ = +‘/l — y2.
Does it suffice simply to replace cos(x — c) with sin(x — c)
in piecing together a solution that is defined for all x?

0 ifx2≤c,
y(x) = (x2 —c)2 ifx2 > c

satisfies the differential equation y’ = 4xq57 for all x.
Sketch a variety of such solution curves for different val
ues of c. Then determine (in terms of a and b) how many
different solutions the initial value problem y’ = 4xq57,
y(a) = b has.

31 If c ~ 0, verify that the function defined by y(x)
x/(cx — I) (with the graph illustrated in Fig. 1.3.26) sat
isfies the differential equation x2y’ + y2 = 0 if x 0 1
Sketch a variety of such solution curves for different val
ues of c. Also, note the constant-valued function y(x) 0
that does not result from any choice of the constant
Finally, determine (in terms of a and b) how many dif
ferent solutions the initial value problem x2y’ + 9 = 0,
y(a) = b has.

\\ \ \ II I l\ \ \\
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FIGURE 1.3.26. Slope field for x2y’ + 9 = 0 and
graph of a solution y(x) = x/(cx —1).

34. (a) Use the direction field of Problem 5 to estimate the
values at x = I of the two solutions of the differ
ential equation y’ = y — x + 1 with initial values
y(—l) = —1.2 and y(—l) = —0.8.

(b) Use a computer algebra system to estimate the val
ues at x = 3 of the two solutions of this differen
tial equation with initial values y(—3) = 3.01 and
y(—3) = 2.99.

The lesson of this problem is that small changes in initial
conditions can make big differences in results.

35. (a) Use the direction field of Problem 6 to estimate the
values at x = 2 of the two solutions of the differ
ential equation y’ = x y + I with initial values
y(—3) = —0.2 and y( 3) = +0.2.

(b) Use a computer algebra system to estimate the val
ues at x = 2 of the two solutions of this differen
tial equation with initial values y(—3) = —0.5 and

+0.5.

The lesson of this problem is that big changes in initial
conditions may make only small differences in results.

32. Verify that if c > 0, then the function defined piecewise by

y =
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________________ Computer-Generated Slope Fields and Solution Curves

Widely available computer algebra systems and technical computing environments
include facilities to automate the construction of slope fields and solution curves, as
do some graphing calculators (see Figs. 1.3.27—29).

The applications manual accompanying this textbook includes discussion of
MapleTM, Marhematica~, and MATLABTM resources for the investigation of dif
ferential equations. For instance, the Maple command

with(DEtools)
DEplot(diff(y(x),x)sin(x—y(x)), y(x), x=—5..5, y=—5..5);

and the Mathematica command

VectorPlot[{1, Sin[x—yJ), {x, —5, 5), fy, —5, 5))

produce slope fields similar to the one shown in Fig. 1.3.29. Figure 1.3.29 it
self was generated with the MATLAB program dfield [John Polking and David
Arnold, Ordinary D(fferential Equations Using MATLAB, 3rd edition, Upper Sad
dle River, NJ: Prentice Hall, 2003] that is freely available for educational use
(math.rice - edu/-..dfield). This web site also provides a stand-alone Java ver
sion of dfield that can be used in a web browseL When a differential equation is
entered in the df ield setup menu (Fig. 1.3.30), you can (with mouse button clicks)
plot both a slope field and the solution curve (or curves) through any desired point
(or points). Another freely available and user-friendly MATLAB-based ODE pack
age with impressive graphical capabilities is lode (www.math.uiuc.edu/iode).

J.—i...t.~L_’_ ~,I_J%j\4%.L

5~SI
z~fr;~

—N

NNN~~. NNNN—
N—-~N

n
N N N

N N~
N — — _-

_~-_ ~

-.-

FIGURE 1.3.28. Slope field and solution curves for the differential
equation

dy
dx = sln(x — y)

with initial points (0, b), b = 2.5, 1, 1,3.5 and window 5 <x, y <5
on a TI~NspireTM CX CAS handheld.

Modem technology platforms offer even further interactivity by allowing the
user to vary initial conditions and other parameters “in real time.” Mathematica’s
Manipulate command was used to generate Fig. 1.3.31, which shows three par
ticular solutions of the differential equation dy/dx = sin(x — y). The solid curve
corresponds to the initial condition y(l) = 0. As the “locator point” initially at
(1,0) is dragged—by mouse or touchpad—to the point (0,3) or (2, —2), the solution
curve immediately follows, resulting in the dashed curves shown. The TI~NspireTM
CX CAS has similar capability; indeed, as Fig. 1.3.28 appears on the Nspire dis
play, each of the initial points (0, b) can be dragged to different locations using the
Nspire’s touchpad, with the corresponding solution curves being instantly redrawn.

1.3 Application
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FIGURE 1.3.27. 11-84 Plus”4
graphing calculator and TLNspire”’
CX CAS handheld. Screensliot from
Texas Instruments Incorporated.
Courtesy of Texas Instruments
Incorporated.
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FIGURE 1.3.29. Computer-
generated slope field and solution
curves for the differential equation

sin(x — y).
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FIGURE 1.3.30. MAmAS dfield setup to construct slope field and solution curves for
= sin(x y).

Use a graphing calculator or computer system in the following investigations.
You might warm up by generating the slope fields and some solution curves for
Problems 1 through 10 in this section.

INVESTIGATION A: Plot a slope field and typical solution curves for the differen
tial equation dy/dx = sin(x — y), but with a larger window than that of Fig. 1.3.29.
With —10 S x 5 10, —105 y S 10, for instance, a number of apparent straight line
solution curves should be visible, especially if your display allows you to drag the
initial point interactively from upper left to lower right.

(a) Substitute y = ax + b in the differential equation to determine what the coeffi
cients a and b must be in order to get a solution. Are the results consistent with
what you see on the display?

(b) A computer algebra system gives the general solution

1/x—2__C
y(x)=x 2tan ~ ~

Plot this solution with selected values of the constant C to compare the resulting
solution curves with those indicated in Fig. 1.3.28. Can you see that no value of
C yields the linear solution y = x — 42 corresponding to the initial condition

= 0? Are there any values of C for which the corresponding solution
curves lie close to this straight line solution curve?

INVESTIGATION B: For your own personal investigation, let ii be the smallest
digit in your student ID number that is greater than I, and consider the differential
equation

dy 1
— — cos(x — ny).

(a) First investigate (as in part (a) of Investigation A) the possibility of straight line
solutions.

(b) Then generate a slope field for this differential equation, with the viewing win
dow chosen so that you can picture some of these straight lines, plus a sufficient
number of nonlinear solution curves that you can formulate a conjecture about
what happens to y(x) as x —÷ +00. State your inference as plainly as you can.
Given the initial value y(O) = yo, try to predict (perhaps in terms of yo) how
y(x) behaves as x —> +00.
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FIGURE 1.3.31. Interactive
/,la,1,ematica solution of the
differential equation y’ — sin(x y).
The “locator point” corresponding to
he initial condition y(I) = 0 can be

dragged to any other point in the
display, causing the solution curve to
be automatically redrawn.


